矩阵可相似对角化

矩阵可相似对角化

相似对角化的定义

一个矩阵 A A A可以相似对角化,指的是矩阵可以通过初等行变换和相同的列变换,转换成一个对角矩阵。即:存在一个可逆矩阵 P P P,使得 P − 1 A P = Λ . (1) P^{-1}AP=\Lambda. \tag1 P−1AP=Λ.(1)

相似对角化的充要条件

对等式 ( 1 ) (1) (1)的两边同时乘以矩阵 P P P,得到 A P = P Λ (2) AP=P \Lambda \tag2 AP=PΛ(2)。为了更加清晰的展示矩阵内部的乘法运算,我们将矩阵 P P P表示为列向量的排列,记
P = [ ξ 1 , ξ 2 , ⋯   , ξ n ] (3) P=[\xi_1,\xi_2,\cdots,\xi_n] \tag3 P=[ξ1,ξ2,⋯,ξn](3)

将对角矩阵表示为:
Λ = [ λ 1 λ 2 ⋱ λ n ] (4) \Lambda= \begin{bmatrix} \lambda_1 &&& \\ & \lambda_2 && \\ && \ddots & \\ &&& \lambda_n \end{bmatrix} \tag4 Λ= λ1λ2⋱λn (4)

将 ( 3 ) ( 4 ) (3)(4) (3)(4)代入等式 ( 2 ) (2) (2)中得到:
A ξ i = λ i ξ i , i = 1 , 2 , ⋯   , n A \xi_i =\lambda_i \xi_i,i=1,2,\cdots,n Aξi=λiξi,i=1,2,⋯,n

上面的过程将矩阵对角化的问题转化为了求矩阵特征值和特征向量的问题,而且每一步都是等价的。那么我么可以得到:

①n阶矩阵A可相似对角化 ⟺ \Longleftrightarrow ⟺ A有n个线性无关的特征向量

由于每个 k i k_i ki重的特征值至多有k个线性无关的特征向量。

②n阶矩阵A可相似对角化 ⟺ \Longleftrightarrow ⟺ 每一个 k i k_i ki重的特征值有 k i k_i ki个线性无关的特征向量。

这时出现了一种特殊的情况,即每一个特征向量都是不同的,那么

③如果n阶矩阵A有n个不同的特征值,由于每个特征值对应的特征向量线性无关,则一定有n个线性无关的特征向量,所以A可相似对角化

我们在做题的时候,如何判断给出的矩阵是否可相似对角化呢?

一、给出了矩阵的具体表达形式

1、化简 λ E − A \lambda E-A λE−A,计算特征值

2、如果n个不同的特征值,那么可相似对角化

3、如果每一个 k i k_i ki重的特征值有 k i k_i ki个线性无关的特征向量,那么可相似对角化

4、两个条件都不满足,则不可相似对角化

二、矩阵形式未给出

或者隐晦地给出特征值

如: ∣ λ E − A ∣ = 0 , ( λ E − A ) x = 0 有非零解, λ E − A 不可逆 |\lambda E-A|=0,(\lambda E-A)x=0有非零解,\lambda E-A不可逆 ∣λE−A∣=0,(λE−A)x=0有非零解,λE−A不可逆

特别地: ∣ A ∣ = 0 |A|=0 ∣A∣=0表示 A A A有一个特征值 : 0 :0 :0

相关推荐
峙峙峙4 小时前
线性代数--AI数学基础复习
人工智能·线性代数
我爱C编程6 小时前
基于拓扑结构检测的LDPC稀疏校验矩阵高阶环检测算法matlab仿真
算法·matlab·矩阵·ldpc·环检测
CVer儿8 小时前
svd分解求旋转平移矩阵
线性代数·算法·矩阵
张晓~1833994812113 小时前
数字人分身+矩阵系统聚合+碰一碰发视频: 源码搭建-支持OEM
线性代数·矩阵·音视频
山登绝顶我为峰 3(^v^)315 小时前
如何录制带备注的演示文稿(LaTex Beamer + Pympress)
c++·线性代数·算法·计算机·密码学·音视频·latex
微小冷1 天前
二关节机器人系统模型推导
线性代数·机器人·概率论·推导·拉格朗日函数·二关节机器人·机器人控制系统的设计
YuTaoShao2 天前
【LeetCode 热题 100】73. 矩阵置零——(解法二)空间复杂度 O(1)
java·算法·leetcode·矩阵
luofeiju2 天前
使用LU分解求解线性方程组
线性代数·算法
FF-Studio2 天前
【硬核数学 · LLM篇】3.1 Transformer之心:自注意力机制的线性代数解构《从零构建机器学习、深度学习到LLM的数学认知》
人工智能·pytorch·深度学习·线性代数·机器学习·数学建模·transformer
szekl2 天前
HDMI 2.0 4×2矩阵切换器412HN——多信号输入输出的高清解决方案
linux·矩阵·计算机外设·电脑·ekl