【LangChain入门 6 Chain组件】单链和多链

一、单链

1.1 LCEL的语法

| 为关键字,使用 | 作为链接符号

python 复制代码
from langchain_core.output_parsers import StrOutputParser
from langchain_ollama import ChatOllama
llm = ChatOllama( model="deepseek-r1:7b")
parser = StrOutputParser() # 加了这段后,会讲Chunk类转化成字符串,也就是获取Chunk类中的content内容

chain = prompt | llm | parser  # 使用LCEL语法创建链
response = chain.invoke({"input":"宠物"})
print(response)

1.2 LLMChain

LLMChain 是 LangChain 中最基本且最常用的链式结构,广泛应用于 LangChain 的其他复杂链和代理程序中。它由以下两个主要部分组成:

  • PromptTemplate:用于定义提示模板,将用户输入动态格式化为语言模型能够理解的提示。
  • 语言模型(LLM 或聊天模型):用于处理格式化后的提示,并生成响应。
python 复制代码
from langchain.chains import LLMChain
from langchain_core.prompts import ChatPromptTemplate

# 1 实例化模型
llm = ChatOllama( model="deepseek-r1:7b")
# 2 定义模板
prompt = ChatPromptTemplate.from_template("给我取一个关于{input}的店名")

# 3 构建Chain,将大模型与prompt组合在一起
chain = LLMChain(prompt=prompt, llm=llm)

# 4 执行Chain
response = chain.invoke({"input":"宠物"})
print(response)

input_list = [{"input":"宠物"}, {"input":"鲜花"}]
response = chain.apply(input_list) # 批量输出

三、多链组装

将多个链条融合在一起

LangChain 提供了强大的多链功能,允许用户通过组合多个链(Chain)来实现复杂的任务。这些链可以按顺序执行,也可以并行执行,从而实现高效的模型协作和协调

  1. 串联多个链(Sequential Chains)
    通过 SimpleSequentialChain 或管道操作符 |,可以将多个链按顺序串联起来。前一个链的输出会自动作为下一个链的输入。
  2. LangChain 支持并行执行多个链,这在需要同时处理多个任务时非常有用
  3. 分支和合并(Branching and Merging) LangChain 支持创建复杂的计算图,允许将一个组件的输出分叉为多个组件的输入,并在后续步骤中合并结
python 复制代码
from langchain_ollama import ChatOllama
from langchain_core.prompts import ChatPromptTemplate
from langchain.chains import SimpleSequentialChain, LLMChain

prompt = ChatPromptTemplate.from_template("给我取一个关于{input}的店名")
llm = ChatOllama( model="deepseek-r1:7b")

prompt_second = ChatPromptTemplate.from_template("给我的跑车取一个关于{input}的名字")

first_chain = LLMChain(prompt=prompt, llm=llm) # 创建第一个链
second_chain = LLMChain(prompt=prompt_second, llm=llm)

all_chain = SimpleSequentialChain(chains=[first_chain, second_chain], 
                                  verbose=True)

response = all_chain.invoke({"input":"狗"})
相关推荐
少林码僧6 小时前
14.2 《3小时从零搭建企业级LLaMA3语言助手:GitHub配置+私有化模型集成全实战》
人工智能·机器学习·语言模型·langchain
何双新10 小时前
第3讲、LangChain性能优化:上下文缓存与流式响应实战指南
缓存·性能优化·langchain
程序员阿超的博客1 天前
Java大模型开发入门 (13/15):拥抱官方标准 - Spring AI框架入门与实践
人工智能·langchain·大模型·spring ai·langchain4j
丁学文武1 天前
Mac 安装ElasticSearch和Kibana详细教程
elasticsearch·macos·langchain·jenkins
AGI老王3 天前
告别大模型知识幻觉!看LangChain如何用检索增强生成打造可靠AI问答系统
人工智能·langchain·llm
余衫马3 天前
提升语义搜索效率:LangChain 与 Milvus 的混合搜索实战
langchain·milvus
开发者工具分享3 天前
大模型知识库RAG框架,比如LangChain、ChatChat、FastGPT等等,哪个效果比较好
数据库·langchain
小陈phd3 天前
langchain从入门到精通(九)——ChatGPT/Playground手动模拟记忆功能
人工智能·chatgpt·langchain
AI大模型3 天前
AI大模型应用开发(四)用LangChain构建带Agent流程的RAG系统
langchain·llm·agent
AI大模型3 天前
AI大模型应用开发入门(三)LangChain开发RAG增强检索生成
程序员·langchain·llm