[python]Swin Transformer图像分类安装和训练官方教程

This folder contains the implementation of the Swin Transformer for image classification.

Model Zoo

Please refer to MODEL HUB for more pre-trained models.

Usage

Install

We recommend using the pytorch docker nvcr>=21.05 by nvidia: PyTorch | NVIDIA NGC.

  • Clone this repo:
复制代码
git clone https://github.com/microsoft/Swin-Transformer.git
cd Swin-Transformer
  • Create a conda virtual environment and activate it:
复制代码
conda create -n swin python=3.7 -y
conda activate swin
复制代码
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=10.2 -c pytorch
  • Install timm==0.4.12:
复制代码
pip install timm==0.4.12
  • Install other requirements:
复制代码
pip install opencv-python==4.4.0.46 termcolor==1.1.0 yacs==0.1.8 pyyaml scipy
  • Install fused window process for acceleration, activated by passing --fused_window_process in the running script
复制代码
cd kernels/window_process
python setup.py install #--user

Data preparation

We use standard ImageNet dataset, you can download it from ImageNet. We provide the following two ways to load data:

  • For standard folder dataset, move validation images to labeled sub-folders. The file structure should look like:

    复制代码
    $ tree data
    imagenet
    ├── train
    │   ├── class1
    │   │   ├── img1.jpeg
    │   │   ├── img2.jpeg
    │   │   └── ...
    │   ├── class2
    │   │   ├── img3.jpeg
    │   │   └── ...
    │   └── ...
    └── val
        ├── class1
        │   ├── img4.jpeg
        │   ├── img5.jpeg
        │   └── ...
        ├── class2
        │   ├── img6.jpeg
        │   └── ...
        └── ...
  • To boost the slow speed when reading images from massive small files, we also support zipped ImageNet, which includes four files:

    • train.zip, val.zip: which store the zipped folder for train and validate splits.
    • train_map.txt, val_map.txt: which store the relative path in the corresponding zip file and ground truth label. Make sure the data folder looks like this:
    复制代码
    $ tree data
    data
    └── ImageNet-Zip
        ├── train_map.txt
        ├── train.zip
        ├── val_map.txt
        └── val.zip
    
    $ head -n 5 data/ImageNet-Zip/val_map.txt
    ILSVRC2012_val_00000001.JPEG	65
    ILSVRC2012_val_00000002.JPEG	970
    ILSVRC2012_val_00000003.JPEG	230
    ILSVRC2012_val_00000004.JPEG	809
    ILSVRC2012_val_00000005.JPEG	516
    
    $ head -n 5 data/ImageNet-Zip/train_map.txt
    n01440764/n01440764_10026.JPEG	0
    n01440764/n01440764_10027.JPEG	0
    n01440764/n01440764_10029.JPEG	0
    n01440764/n01440764_10040.JPEG	0
    n01440764/n01440764_10042.JPEG	0
  • For ImageNet-22K dataset, make a folder named fall11_whole and move all images to labeled sub-folders in this folder. Then download the train-val split file (ILSVRC2011fall_whole_map_train.txt & ILSVRC2011fall_whole_map_val.txt) , and put them in the parent directory of fall11_whole. The file structure should look like:

    复制代码
      $ tree imagenet22k/
      imagenet22k/
      ├── ILSVRC2011fall_whole_map_train.txt
      ├── ILSVRC2011fall_whole_map_val.txt
      └── fall11_whole
          ├── n00004475
          ├── n00005787
          ├── n00006024
          ├── n00006484
          └── ...

Evaluation

To evaluate a pre-trained Swin Transformer on ImageNet val, run:

复制代码
python -m torch.distributed.launch --nproc_per_node <num-of-gpus-to-use> --master_port 12345 main.py --eval \
--cfg <config-file> --resume <checkpoint> --data-path <imagenet-path> 

For example, to evaluate the Swin-B with a single GPU:

复制代码
python -m torch.distributed.launch --nproc_per_node 1 --master_port 12345 main.py --eval \
--cfg configs/swin/swin_base_patch4_window7_224.yaml --resume swin_base_patch4_window7_224.pth --data-path <imagenet-path>

Training from scratch on ImageNet-1K

To train a Swin Transformer on ImageNet from scratch, run:

复制代码
python -m torch.distributed.launch --nproc_per_node <num-of-gpus-to-use> --master_port 12345  main.py \ 
--cfg <config-file> --data-path <imagenet-path> [--batch-size <batch-size-per-gpu> --output <output-directory> --tag <job-tag>]

Notes:

  • To use zipped ImageNet instead of folder dataset, add --zip to the parameters.
    • To cache the dataset in the memory instead of reading from files every time, add --cache-mode part, which will shard the dataset into non-overlapping pieces for different GPUs and only load the corresponding one for each GPU.
  • When GPU memory is not enough, you can try the following suggestions:
    • Use gradient accumulation by adding --accumulation-steps <steps>, set appropriate <steps> according to your need.
    • Use gradient checkpointing by adding --use-checkpoint, e.g., it saves about 60% memory when training Swin-B. Please refer to this page for more details.
    • We recommend using multi-node with more GPUs for training very large models, a tutorial can be found in this page.
  • To change config options in general, you can use --opts KEY1 VALUE1 KEY2 VALUE2, e.g., --opts TRAIN.EPOCHS 100 TRAIN.WARMUP_EPOCHS 5 will change total epochs to 100 and warm-up epochs to 5.
  • For additional options, see config and run python main.py --help to get detailed message.

For example, to train Swin Transformer with 8 GPU on a single node for 300 epochs, run:

Swin-T:

复制代码
python -m torch.distributed.launch --nproc_per_node 8 --master_port 12345  main.py \
--cfg configs/swin/swin_tiny_patch4_window7_224.yaml --data-path <imagenet-path> --batch-size 128 

Swin-S:

复制代码
python -m torch.distributed.launch --nproc_per_node 8 --master_port 12345  main.py \
--cfg configs/swin/swin_small_patch4_window7_224.yaml --data-path <imagenet-path> --batch-size 128 

Swin-B:

复制代码
python -m torch.distributed.launch --nproc_per_node 8 --master_port 12345  main.py \
--cfg configs/swin/swin_base_patch4_window7_224.yaml --data-path <imagenet-path> --batch-size 64 \
--accumulation-steps 2 [--use-checkpoint]

Pre-training on ImageNet-22K

For example, to pre-train a Swin-B model on ImageNet-22K:

复制代码
python -m torch.distributed.launch --nproc_per_node 8 --master_port 12345  main.py \
--cfg configs/swin/swin_base_patch4_window7_224_22k.yaml --data-path <imagenet22k-path> --batch-size 64 \
--accumulation-steps 8 [--use-checkpoint]

Fine-tuning on higher resolution

For example, to fine-tune a Swin-B model pre-trained on 224x224 resolution to 384x384 resolution:

复制代码
python -m torch.distributed.launch --nproc_per_node 8 --master_port 12345  main.py \
--cfg configs/swin/swin_base_patch4_window12_384_finetune.yaml --pretrained swin_base_patch4_window7_224.pth \
--data-path <imagenet-path> --batch-size 64 --accumulation-steps 2 [--use-checkpoint]

Fine-tuning from a ImageNet-22K(21K) pre-trained model

For example, to fine-tune a Swin-B model pre-trained on ImageNet-22K(21K):

复制代码
python -m torch.distributed.launch --nproc_per_node 8 --master_port 12345  main.py \
--cfg configs/swin/swin_base_patch4_window7_224_22kto1k_finetune.yaml --pretrained swin_base_patch4_window7_224_22k.pth \
--data-path <imagenet-path> --batch-size 64 --accumulation-steps 2 [--use-checkpoint]

Throughput

To measure the throughput, run:

复制代码
python -m torch.distributed.launch --nproc_per_node 1 --master_port 12345  main.py \
--cfg <config-file> --data-path <imagenet-path> --batch-size 64 --throughput --disable_amp

Mixture-of-Experts Support

Install Tutel

复制代码
python3 -m pip uninstall tutel -y 
python3 -m pip install --user --upgrade git+https://github.com/microsoft/tutel@main

Training Swin-MoE

For example, to train a Swin-MoE-S model with 32 experts on ImageNet-22K with 32 GPUs (4 nodes):

复制代码
python -m torch.distributed.launch --nproc_per_node 8 --nnode=4 \
--node_rank=<node-rank> --master_addr=<master-ip> --master_port 12345  main_moe.py \
--cfg configs/swinmoe/swin_moe_small_patch4_window12_192_32expert_32gpu_22k.yaml --data-path <imagenet22k-path> --batch-size 128

Evaluating Swin-MoE

To evaluate a Swin-MoE-S with 32 experts on ImageNet-22K with 32 GPUs (4 nodes):

  1. Download the zip file swin_moe_small_patch4_window12_192_32expert_32gpu_22k.zip which contains the pre-trained models for each rank, and unzip them to the folder "swin_moe_small_patch4_window12_192_32expert_32gpu_22k".
  2. Run the following evaluation command, note the checkpoint path should not contain the ".rank<x>" suffix.
复制代码
python -m torch.distributed.launch --nproc_per_node 8 --nnode=4 \
--node_rank=<node-rank> --master_addr=<master-ip> --master_port 12345  main_moe.py \
--cfg configs/swinmoe/swin_moe_small_patch4_window12_192_32expert_32gpu_22k.yaml --data-path <imagenet22k-path> --batch-size 128 \
--resume swin_moe_small_patch4_window12_192_32expert_32gpu_22k/swin_moe_small_patch4_window12_192_32expert_32gpu_22k.pth 

More Swin-MoE models can be found in MODEL HUB

SimMIM Support

Evaluating provided models

To evaluate a provided model on ImageNet validation set, run:

复制代码
python -m torch.distributed.launch --nproc_per_node <num-of-gpus-to-use> main_simmim_ft.py \
--eval --cfg <config-file> --resume <checkpoint> --data-path <imagenet-path>

For example, to evaluate the Swin Base model on a single GPU, run:

复制代码
python -m torch.distributed.launch --nproc_per_node 1 main_simmim_ft.py \
--eval --cfg configs/simmim/simmim_finetune__swin_base__img224_window7__800ep.yaml --resume simmim_finetune__swin_base__img224_window7__800ep.pth --data-path <imagenet-path>

Pre-training with SimMIM

To pre-train models with SimMIM, run:

复制代码
python -m torch.distributed.launch --nproc_per_node <num-of-gpus-to-use> main_simmim_pt.py \ 
--cfg <config-file> --data-path <imagenet-path>/train [--batch-size <batch-size-per-gpu> --output <output-directory> --tag <job-tag>]

For example, to pre-train Swin Base for 800 epochs on one DGX-2 server, run:

复制代码
python -m torch.distributed.launch --nproc_per_node 16 main_simmim_pt.py \ 
--cfg configs/simmim/simmim_pretrain__swin_base__img192_window6__800ep.yaml --batch-size 128 --data-path <imagenet-path>/train [--output <output-directory> --tag <job-tag>]

Fine-tuning pre-trained models

To fine-tune models pre-trained by SimMIM, run:

复制代码
python -m torch.distributed.launch --nproc_per_node <num-of-gpus-to-use> main_simmim_ft.py \ 
--cfg <config-file> --data-path <imagenet-path> --pretrained <pretrained-ckpt> [--batch-size <batch-size-per-gpu> --output <output-directory> --tag <job-tag>]

For example, to fine-tune Swin Base pre-trained by SimMIM on one DGX-2 server, run:

复制代码
python -m torch.distributed.launch --nproc_per_node 16 main_simmim_ft.py \ 
--cfg configs/simmim/simmim_finetune__swin_base__img224_window7__800ep.yaml --batch-size 128 --data-path <imagenet-path> --pretrained <pretrained-ckpt> [--output <output-directory> --tag <job-tag>]

地址:github.com/microsoft/Swin-Transformer/blob/main/get_started.md

相关推荐
Suc_zhan几秒前
实验一 基于支持向量机实现激酶抑制剂的分类
python·算法·支持向量机·分类
不辉放弃2 分钟前
Flink/Kafka在python中的用处
大数据·python
BAs53316 分钟前
Anaconda Jupyter 默认启动位置修改
ide·python·jupyter·conda
weixin_4450547217 分钟前
力扣刷题-热题100题-第26题(c++、python)
c++·python·算法·leetcode
郝YH是人间理想35 分钟前
OpenCV基础——轮廓检测、模板匹配、图像均衡化
开发语言·图像处理·人工智能·python·opencv·计算机视觉
云梦之上1 小时前
视觉风格提示词:Visual Style Prompting with Swapping Self-Attention(风格迁移)
pytorch·python·计算机视觉·ai作画·prompt
溯源0061 小时前
pytorch中不同的mask方法:masked_fill, masked_select, masked_scatter
人工智能·pytorch·python
名字都被谁用了1 小时前
Python入门(2)——变量命名规则与6大核心数据类型
开发语言·python·pycharm
可乐张1 小时前
Qwen最新多模态大模型:Qwen2.5-Omni介绍与快速入门
人工智能·python·aigc
Ai 编码助手1 小时前
PHP泛型与集合的未来:从动态类型到强类型的演进
java·python·php