Using Huge Pages in Linux for Big Data Processing

Using Huge Pages in Linux for Big Data Processing

Huge pages can significantly improve performance for big data processing by reducing TLB (Translation Lookaside Buffer) misses and memory management overhead. Here's how to use them in Linux with C/C++ examples.

1. Configuring Huge Pages in Linux

First, configure huge pages on your system:

bash 复制代码
# Check current huge page settings
cat /proc/meminfo | grep Huge

# Set number of huge pages (e.g., 1024 pages of 2MB each = 2GB)
sudo sysctl vm.nr_hugepages=1024

# Make it persistent by adding to /etc/sysctl.conf
echo "vm.nr_hugepages=1024" | sudo tee -a /etc/sysctl.conf
sudo sysctl -p

2. C/C++ Example Using Huge Pages

Here's a complete example demonstrating huge page allocation:

c 复制代码
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <unistd.h>

#define HUGE_PAGE_SIZE (2 * 1024 * 1024)  // 2MB for x86_64
#define ARRAY_SIZE (1024 * 1024 * 1024)    // 1GB array

// Method 1: Using mmap with MAP_HUGETLB flag
void* allocate_huge_pages_mmap(size_t size) {
    void* ptr = mmap(NULL, size, PROT_READ | PROT_WRITE,
                    MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
                    -1, 0);
    
    if (ptr == MAP_FAILED) {
        perror("mmap");
        return NULL;
    }
    
    printf("Allocated %zu bytes using mmap+MAP_HUGETLB at %p\n", size, ptr);
    return ptr;
}

// Method 2: Using hugetlbfs filesystem
void* allocate_huge_pages_hugetlbfs(size_t size) {
    char path[] = "/dev/hugepages/hugepagefile";
    int fd = open(path, O_CREAT | O_RDWR, 0755);
    
    if (fd < 0) {
        perror("open");
        return NULL;
    }
    
    void* ptr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
    if (ptr == MAP_FAILED) {
        perror("mmap");
        close(fd);
        return NULL;
    }
    
    printf("Allocated %zu bytes using hugetlbfs at %p\n", size, ptr);
    close(fd);
    return ptr;
}

void process_large_data(double* data, size_t size) {
    // Simulate big data processing
    for (size_t i = 0; i < size / sizeof(double); i++) {
        data[i] = i * 0.5;
    }
    
    // Do some computation
    double sum = 0;
    for (size_t i = 0; i < size / sizeof(double); i++) {
        sum += data[i];
    }
    
    printf("Processing completed. Sum: %f\n", sum);
}

int main() {
    // Allocate memory using huge pages
    double* huge_data = (double*)allocate_huge_pages_mmap(ARRAY_SIZE);
    if (!huge_data) {
        fprintf(stderr, "Failed to allocate using mmap+MAP_HUGETLB. Trying hugetlbfs...\n");
        huge_data = (double*)allocate_huge_pages_hugetlbfs(ARRAY_SIZE);
        if (!huge_data) {
            fprintf(stderr, "Failed to allocate huge pages. Falling back to regular pages.\n");
            huge_data = (double*)malloc(ARRAY_SIZE);
            if (!huge_data) {
                perror("malloc");
                return 1;
            }
        }
    }
    
    // Process data
    process_large_data(huge_data, ARRAY_SIZE);
    
    // Free memory
    if (munmap(huge_data, ARRAY_SIZE) {
        perror("munmap");
    }
    
    return 0;
}

3. Compiling and Running

Compile the program with:

bash 复制代码
gcc -o hugepage_demo hugepage_demo.c

Run it with:

bash 复制代码
./hugepage_demo

4. Verifying Huge Page Usage

Check huge page usage after running your program:

bash 复制代码
cat /proc/meminfo | grep Huge

5. Important Notes

  1. Permissions: Your program may need appropriate permissions to use huge pages.

  2. Page Size: Default huge page size is typically 2MB. 1GB pages are also available on some systems.

  3. Allocation: Huge page allocation must be contiguous in physical memory.

  4. Transparent Huge Pages (THP) : Linux also supports THP which automatically promotes regular pages to huge pages. Enable with:

    bash 复制代码
    echo "always" | sudo tee /sys/kernel/mm/transparent_hugepage/enabled

6. When to Use Huge Pages

Huge pages are particularly beneficial for:

  • Large in-memory databases
  • Scientific computing applications
  • Big data processing frameworks
  • Any memory-intensive application processing large datasets

The performance improvement comes from reduced TLB pressure and fewer page faults when working with large datasets.


资料

Understanding Huge Pages: Optimizing Memory Usage
Linux HugePages(大内存页) 原理与使用
Performance Benefits of Using Huge Pages for Code
Optimizing Linux for AMD EPYC™ 9005 Series Processors with SUSE Linux Enterprise 15 SP6

相关推荐
芝麻馅汤圆儿16 小时前
sockperf 工具
linux·服务器·数据库
YJlio16 小时前
桌面工具学习笔记(11.1):BgInfo——给服务器桌面“刻”上关键信息
服务器·笔记·学习
IDC02_FEIYA16 小时前
Windows 服务器任务管理器用户客户端名怎么修改?Windows 10修改电脑设备名称
运维·服务器·windows
Trouvaille ~16 小时前
【Linux】虚拟内存揭秘:地址空间的魔法
linux·运维·服务器·系统·入门·虚拟内存·进程地址空间
木子欢儿16 小时前
Debian 13安装rime中文输入法
linux·运维·服务器·debian
Trouvaille ~16 小时前
【Linux】进程等待与资源回收:父进程的责任
linux·运维·服务器·进程等待·进程退出·非阻塞与阻塞·资源回收
木子欢儿16 小时前
Ubuntu24.04 安装rime中文输入法
linux·运维·服务器
gf132111116 小时前
python_基于主视频删减片段并插入镜头视频
linux·python·音视频
liuwei20000017 小时前
Ubuntu 22.04 安装 ROS 2 Humble
linux·运维·ubuntu
YJlio17 小时前
Active Directory 工具学习笔记(10.14):第十章·实战脚本包——AdExplorer/AdInsight/AdRestore 一键化落地
服务器·笔记·学习