Using Huge Pages in Linux for Big Data Processing

Using Huge Pages in Linux for Big Data Processing

Huge pages can significantly improve performance for big data processing by reducing TLB (Translation Lookaside Buffer) misses and memory management overhead. Here's how to use them in Linux with C/C++ examples.

1. Configuring Huge Pages in Linux

First, configure huge pages on your system:

bash 复制代码
# Check current huge page settings
cat /proc/meminfo | grep Huge

# Set number of huge pages (e.g., 1024 pages of 2MB each = 2GB)
sudo sysctl vm.nr_hugepages=1024

# Make it persistent by adding to /etc/sysctl.conf
echo "vm.nr_hugepages=1024" | sudo tee -a /etc/sysctl.conf
sudo sysctl -p

2. C/C++ Example Using Huge Pages

Here's a complete example demonstrating huge page allocation:

c 复制代码
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <unistd.h>

#define HUGE_PAGE_SIZE (2 * 1024 * 1024)  // 2MB for x86_64
#define ARRAY_SIZE (1024 * 1024 * 1024)    // 1GB array

// Method 1: Using mmap with MAP_HUGETLB flag
void* allocate_huge_pages_mmap(size_t size) {
    void* ptr = mmap(NULL, size, PROT_READ | PROT_WRITE,
                    MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
                    -1, 0);
    
    if (ptr == MAP_FAILED) {
        perror("mmap");
        return NULL;
    }
    
    printf("Allocated %zu bytes using mmap+MAP_HUGETLB at %p\n", size, ptr);
    return ptr;
}

// Method 2: Using hugetlbfs filesystem
void* allocate_huge_pages_hugetlbfs(size_t size) {
    char path[] = "/dev/hugepages/hugepagefile";
    int fd = open(path, O_CREAT | O_RDWR, 0755);
    
    if (fd < 0) {
        perror("open");
        return NULL;
    }
    
    void* ptr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
    if (ptr == MAP_FAILED) {
        perror("mmap");
        close(fd);
        return NULL;
    }
    
    printf("Allocated %zu bytes using hugetlbfs at %p\n", size, ptr);
    close(fd);
    return ptr;
}

void process_large_data(double* data, size_t size) {
    // Simulate big data processing
    for (size_t i = 0; i < size / sizeof(double); i++) {
        data[i] = i * 0.5;
    }
    
    // Do some computation
    double sum = 0;
    for (size_t i = 0; i < size / sizeof(double); i++) {
        sum += data[i];
    }
    
    printf("Processing completed. Sum: %f\n", sum);
}

int main() {
    // Allocate memory using huge pages
    double* huge_data = (double*)allocate_huge_pages_mmap(ARRAY_SIZE);
    if (!huge_data) {
        fprintf(stderr, "Failed to allocate using mmap+MAP_HUGETLB. Trying hugetlbfs...\n");
        huge_data = (double*)allocate_huge_pages_hugetlbfs(ARRAY_SIZE);
        if (!huge_data) {
            fprintf(stderr, "Failed to allocate huge pages. Falling back to regular pages.\n");
            huge_data = (double*)malloc(ARRAY_SIZE);
            if (!huge_data) {
                perror("malloc");
                return 1;
            }
        }
    }
    
    // Process data
    process_large_data(huge_data, ARRAY_SIZE);
    
    // Free memory
    if (munmap(huge_data, ARRAY_SIZE) {
        perror("munmap");
    }
    
    return 0;
}

3. Compiling and Running

Compile the program with:

bash 复制代码
gcc -o hugepage_demo hugepage_demo.c

Run it with:

bash 复制代码
./hugepage_demo

4. Verifying Huge Page Usage

Check huge page usage after running your program:

bash 复制代码
cat /proc/meminfo | grep Huge

5. Important Notes

  1. Permissions: Your program may need appropriate permissions to use huge pages.

  2. Page Size: Default huge page size is typically 2MB. 1GB pages are also available on some systems.

  3. Allocation: Huge page allocation must be contiguous in physical memory.

  4. Transparent Huge Pages (THP) : Linux also supports THP which automatically promotes regular pages to huge pages. Enable with:

    bash 复制代码
    echo "always" | sudo tee /sys/kernel/mm/transparent_hugepage/enabled

6. When to Use Huge Pages

Huge pages are particularly beneficial for:

  • Large in-memory databases
  • Scientific computing applications
  • Big data processing frameworks
  • Any memory-intensive application processing large datasets

The performance improvement comes from reduced TLB pressure and fewer page faults when working with large datasets.


资料

Understanding Huge Pages: Optimizing Memory Usage
Linux HugePages(大内存页) 原理与使用
Performance Benefits of Using Huge Pages for Code
Optimizing Linux for AMD EPYC™ 9005 Series Processors with SUSE Linux Enterprise 15 SP6

相关推荐
元清加油3 小时前
【Golang】:函数和包
服务器·开发语言·网络·后端·网络协议·golang
炫友呀4 小时前
Centos 更新/修改宝塔版本
linux·运维·centos
向日葵.5 小时前
fastdds.ignore_local_endpoints 属性
服务器·网络·php
昵称为空C7 小时前
SpringBoot接口限流的常用方案
服务器·spring boot
Peter_Deng.8 小时前
Linux 下基于 TCP 的 C 语言客户端/服务器通信详解(三个示例逐步进阶)
服务器·c语言·网络
花小璇学linux8 小时前
imx6ull-驱动开发篇24——Linux 中断API函数
linux·驱动开发·嵌入式软件
林开落L9 小时前
库制作与原理(下)
linux·开发语言·centos·库制作与原理
wxy3199 小时前
嵌入式LINUX——————TCP并发服务器
java·linux·网络
Castamere9 小时前
配置 Linux 终端 (zsh)
linux
小韩博10 小时前
metasploit 框架安装更新遇到无法下载问题如何解决
linux·网络安全·公钥·下载失败