Using Huge Pages in Linux for Big Data Processing

Using Huge Pages in Linux for Big Data Processing

Huge pages can significantly improve performance for big data processing by reducing TLB (Translation Lookaside Buffer) misses and memory management overhead. Here's how to use them in Linux with C/C++ examples.

1. Configuring Huge Pages in Linux

First, configure huge pages on your system:

bash 复制代码
# Check current huge page settings
cat /proc/meminfo | grep Huge

# Set number of huge pages (e.g., 1024 pages of 2MB each = 2GB)
sudo sysctl vm.nr_hugepages=1024

# Make it persistent by adding to /etc/sysctl.conf
echo "vm.nr_hugepages=1024" | sudo tee -a /etc/sysctl.conf
sudo sysctl -p

2. C/C++ Example Using Huge Pages

Here's a complete example demonstrating huge page allocation:

c 复制代码
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <unistd.h>

#define HUGE_PAGE_SIZE (2 * 1024 * 1024)  // 2MB for x86_64
#define ARRAY_SIZE (1024 * 1024 * 1024)    // 1GB array

// Method 1: Using mmap with MAP_HUGETLB flag
void* allocate_huge_pages_mmap(size_t size) {
    void* ptr = mmap(NULL, size, PROT_READ | PROT_WRITE,
                    MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
                    -1, 0);
    
    if (ptr == MAP_FAILED) {
        perror("mmap");
        return NULL;
    }
    
    printf("Allocated %zu bytes using mmap+MAP_HUGETLB at %p\n", size, ptr);
    return ptr;
}

// Method 2: Using hugetlbfs filesystem
void* allocate_huge_pages_hugetlbfs(size_t size) {
    char path[] = "/dev/hugepages/hugepagefile";
    int fd = open(path, O_CREAT | O_RDWR, 0755);
    
    if (fd < 0) {
        perror("open");
        return NULL;
    }
    
    void* ptr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
    if (ptr == MAP_FAILED) {
        perror("mmap");
        close(fd);
        return NULL;
    }
    
    printf("Allocated %zu bytes using hugetlbfs at %p\n", size, ptr);
    close(fd);
    return ptr;
}

void process_large_data(double* data, size_t size) {
    // Simulate big data processing
    for (size_t i = 0; i < size / sizeof(double); i++) {
        data[i] = i * 0.5;
    }
    
    // Do some computation
    double sum = 0;
    for (size_t i = 0; i < size / sizeof(double); i++) {
        sum += data[i];
    }
    
    printf("Processing completed. Sum: %f\n", sum);
}

int main() {
    // Allocate memory using huge pages
    double* huge_data = (double*)allocate_huge_pages_mmap(ARRAY_SIZE);
    if (!huge_data) {
        fprintf(stderr, "Failed to allocate using mmap+MAP_HUGETLB. Trying hugetlbfs...\n");
        huge_data = (double*)allocate_huge_pages_hugetlbfs(ARRAY_SIZE);
        if (!huge_data) {
            fprintf(stderr, "Failed to allocate huge pages. Falling back to regular pages.\n");
            huge_data = (double*)malloc(ARRAY_SIZE);
            if (!huge_data) {
                perror("malloc");
                return 1;
            }
        }
    }
    
    // Process data
    process_large_data(huge_data, ARRAY_SIZE);
    
    // Free memory
    if (munmap(huge_data, ARRAY_SIZE) {
        perror("munmap");
    }
    
    return 0;
}

3. Compiling and Running

Compile the program with:

bash 复制代码
gcc -o hugepage_demo hugepage_demo.c

Run it with:

bash 复制代码
./hugepage_demo

4. Verifying Huge Page Usage

Check huge page usage after running your program:

bash 复制代码
cat /proc/meminfo | grep Huge

5. Important Notes

  1. Permissions: Your program may need appropriate permissions to use huge pages.

  2. Page Size: Default huge page size is typically 2MB. 1GB pages are also available on some systems.

  3. Allocation: Huge page allocation must be contiguous in physical memory.

  4. Transparent Huge Pages (THP) : Linux also supports THP which automatically promotes regular pages to huge pages. Enable with:

    bash 复制代码
    echo "always" | sudo tee /sys/kernel/mm/transparent_hugepage/enabled

6. When to Use Huge Pages

Huge pages are particularly beneficial for:

  • Large in-memory databases
  • Scientific computing applications
  • Big data processing frameworks
  • Any memory-intensive application processing large datasets

The performance improvement comes from reduced TLB pressure and fewer page faults when working with large datasets.


资料

Understanding Huge Pages: Optimizing Memory Usage
Linux HugePages(大内存页) 原理与使用
Performance Benefits of Using Huge Pages for Code
Optimizing Linux for AMD EPYC™ 9005 Series Processors with SUSE Linux Enterprise 15 SP6

相关推荐
知星小度S24 分钟前
Linux权限探秘:驾驭权限模型,筑牢系统安全
linux·运维·服务器
黄交大彭于晏28 分钟前
发送文件脚本源码版本
java·linux·windows
搞Linux的杰仔1 小时前
Ubuntu20.04基础配置安装——系统安装(一)
linux·嵌入式开发
Kaede63 小时前
如何应对Linux云服务器磁盘空间不足的情况
linux·运维·服务器
Zfox_5 小时前
Redis:Hash数据类型
服务器·数据库·redis·缓存·微服务·哈希算法
apocelipes9 小时前
Linux c 运行时获取动态库所在路径
linux·c语言·linux编程
ABB自动化9 小时前
for AC500 PLCs 3ADR025003M9903的安全说明
服务器·安全·机器人
努力学习的小廉10 小时前
深入了解linux系统—— 进程池
linux·运维·服务器
秃头菜狗10 小时前
各个主要目录的功能 / Linux 常见指令
linux·运维·服务器
利刃大大10 小时前
【在线五子棋对战】二、websocket && 服务器搭建
服务器·c++·websocket·网络协议·项目