Using Huge Pages in Linux for Big Data Processing

Using Huge Pages in Linux for Big Data Processing

Huge pages can significantly improve performance for big data processing by reducing TLB (Translation Lookaside Buffer) misses and memory management overhead. Here's how to use them in Linux with C/C++ examples.

1. Configuring Huge Pages in Linux

First, configure huge pages on your system:

bash 复制代码
# Check current huge page settings
cat /proc/meminfo | grep Huge

# Set number of huge pages (e.g., 1024 pages of 2MB each = 2GB)
sudo sysctl vm.nr_hugepages=1024

# Make it persistent by adding to /etc/sysctl.conf
echo "vm.nr_hugepages=1024" | sudo tee -a /etc/sysctl.conf
sudo sysctl -p

2. C/C++ Example Using Huge Pages

Here's a complete example demonstrating huge page allocation:

c 复制代码
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <unistd.h>

#define HUGE_PAGE_SIZE (2 * 1024 * 1024)  // 2MB for x86_64
#define ARRAY_SIZE (1024 * 1024 * 1024)    // 1GB array

// Method 1: Using mmap with MAP_HUGETLB flag
void* allocate_huge_pages_mmap(size_t size) {
    void* ptr = mmap(NULL, size, PROT_READ | PROT_WRITE,
                    MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
                    -1, 0);
    
    if (ptr == MAP_FAILED) {
        perror("mmap");
        return NULL;
    }
    
    printf("Allocated %zu bytes using mmap+MAP_HUGETLB at %p\n", size, ptr);
    return ptr;
}

// Method 2: Using hugetlbfs filesystem
void* allocate_huge_pages_hugetlbfs(size_t size) {
    char path[] = "/dev/hugepages/hugepagefile";
    int fd = open(path, O_CREAT | O_RDWR, 0755);
    
    if (fd < 0) {
        perror("open");
        return NULL;
    }
    
    void* ptr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
    if (ptr == MAP_FAILED) {
        perror("mmap");
        close(fd);
        return NULL;
    }
    
    printf("Allocated %zu bytes using hugetlbfs at %p\n", size, ptr);
    close(fd);
    return ptr;
}

void process_large_data(double* data, size_t size) {
    // Simulate big data processing
    for (size_t i = 0; i < size / sizeof(double); i++) {
        data[i] = i * 0.5;
    }
    
    // Do some computation
    double sum = 0;
    for (size_t i = 0; i < size / sizeof(double); i++) {
        sum += data[i];
    }
    
    printf("Processing completed. Sum: %f\n", sum);
}

int main() {
    // Allocate memory using huge pages
    double* huge_data = (double*)allocate_huge_pages_mmap(ARRAY_SIZE);
    if (!huge_data) {
        fprintf(stderr, "Failed to allocate using mmap+MAP_HUGETLB. Trying hugetlbfs...\n");
        huge_data = (double*)allocate_huge_pages_hugetlbfs(ARRAY_SIZE);
        if (!huge_data) {
            fprintf(stderr, "Failed to allocate huge pages. Falling back to regular pages.\n");
            huge_data = (double*)malloc(ARRAY_SIZE);
            if (!huge_data) {
                perror("malloc");
                return 1;
            }
        }
    }
    
    // Process data
    process_large_data(huge_data, ARRAY_SIZE);
    
    // Free memory
    if (munmap(huge_data, ARRAY_SIZE) {
        perror("munmap");
    }
    
    return 0;
}

3. Compiling and Running

Compile the program with:

bash 复制代码
gcc -o hugepage_demo hugepage_demo.c

Run it with:

bash 复制代码
./hugepage_demo

4. Verifying Huge Page Usage

Check huge page usage after running your program:

bash 复制代码
cat /proc/meminfo | grep Huge

5. Important Notes

  1. Permissions: Your program may need appropriate permissions to use huge pages.

  2. Page Size: Default huge page size is typically 2MB. 1GB pages are also available on some systems.

  3. Allocation: Huge page allocation must be contiguous in physical memory.

  4. Transparent Huge Pages (THP) : Linux also supports THP which automatically promotes regular pages to huge pages. Enable with:

    bash 复制代码
    echo "always" | sudo tee /sys/kernel/mm/transparent_hugepage/enabled

6. When to Use Huge Pages

Huge pages are particularly beneficial for:

  • Large in-memory databases
  • Scientific computing applications
  • Big data processing frameworks
  • Any memory-intensive application processing large datasets

The performance improvement comes from reduced TLB pressure and fewer page faults when working with large datasets.


资料

Understanding Huge Pages: Optimizing Memory Usage
Linux HugePages(大内存页) 原理与使用
Performance Benefits of Using Huge Pages for Code
Optimizing Linux for AMD EPYC™ 9005 Series Processors with SUSE Linux Enterprise 15 SP6

相关推荐
CYRUS_STUDIO3 小时前
用 Frida 控制 Android 线程:kill 命令、挂起与恢复全解析
android·linux·逆向
熊猫李4 小时前
rootfs-根文件系统详解
linux
dessler7 小时前
Hadoop HDFS-高可用集群部署
linux·运维·hdfs
泽泽爱旅行7 小时前
awk 语法解析-前端学习
linux·前端
轻松Ai享生活1 天前
5 节课深入学习Linux Cgroups
linux
christine-rr1 天前
linux常用命令(4)——压缩命令
linux·服务器·redis
三坛海会大神5551 天前
LVS与Keepalived详解(二)LVS负载均衡实现实操
linux·负载均衡·lvs
東雪蓮☆1 天前
深入理解 LVS-DR 模式与 Keepalived 高可用集群
linux·运维·服务器·lvs
乌萨奇也要立志学C++1 天前
【Linux】进程概念(二):进程查看与 fork 初探
linux·运维·服务器
绿箭柠檬茶1 天前
Ubuntu 服务器配置转发网络访问
服务器·网络·ubuntu