Using Huge Pages in Linux for Big Data Processing

Using Huge Pages in Linux for Big Data Processing

Huge pages can significantly improve performance for big data processing by reducing TLB (Translation Lookaside Buffer) misses and memory management overhead. Here's how to use them in Linux with C/C++ examples.

1. Configuring Huge Pages in Linux

First, configure huge pages on your system:

bash 复制代码
# Check current huge page settings
cat /proc/meminfo | grep Huge

# Set number of huge pages (e.g., 1024 pages of 2MB each = 2GB)
sudo sysctl vm.nr_hugepages=1024

# Make it persistent by adding to /etc/sysctl.conf
echo "vm.nr_hugepages=1024" | sudo tee -a /etc/sysctl.conf
sudo sysctl -p

2. C/C++ Example Using Huge Pages

Here's a complete example demonstrating huge page allocation:

c 复制代码
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <unistd.h>

#define HUGE_PAGE_SIZE (2 * 1024 * 1024)  // 2MB for x86_64
#define ARRAY_SIZE (1024 * 1024 * 1024)    // 1GB array

// Method 1: Using mmap with MAP_HUGETLB flag
void* allocate_huge_pages_mmap(size_t size) {
    void* ptr = mmap(NULL, size, PROT_READ | PROT_WRITE,
                    MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
                    -1, 0);
    
    if (ptr == MAP_FAILED) {
        perror("mmap");
        return NULL;
    }
    
    printf("Allocated %zu bytes using mmap+MAP_HUGETLB at %p\n", size, ptr);
    return ptr;
}

// Method 2: Using hugetlbfs filesystem
void* allocate_huge_pages_hugetlbfs(size_t size) {
    char path[] = "/dev/hugepages/hugepagefile";
    int fd = open(path, O_CREAT | O_RDWR, 0755);
    
    if (fd < 0) {
        perror("open");
        return NULL;
    }
    
    void* ptr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
    if (ptr == MAP_FAILED) {
        perror("mmap");
        close(fd);
        return NULL;
    }
    
    printf("Allocated %zu bytes using hugetlbfs at %p\n", size, ptr);
    close(fd);
    return ptr;
}

void process_large_data(double* data, size_t size) {
    // Simulate big data processing
    for (size_t i = 0; i < size / sizeof(double); i++) {
        data[i] = i * 0.5;
    }
    
    // Do some computation
    double sum = 0;
    for (size_t i = 0; i < size / sizeof(double); i++) {
        sum += data[i];
    }
    
    printf("Processing completed. Sum: %f\n", sum);
}

int main() {
    // Allocate memory using huge pages
    double* huge_data = (double*)allocate_huge_pages_mmap(ARRAY_SIZE);
    if (!huge_data) {
        fprintf(stderr, "Failed to allocate using mmap+MAP_HUGETLB. Trying hugetlbfs...\n");
        huge_data = (double*)allocate_huge_pages_hugetlbfs(ARRAY_SIZE);
        if (!huge_data) {
            fprintf(stderr, "Failed to allocate huge pages. Falling back to regular pages.\n");
            huge_data = (double*)malloc(ARRAY_SIZE);
            if (!huge_data) {
                perror("malloc");
                return 1;
            }
        }
    }
    
    // Process data
    process_large_data(huge_data, ARRAY_SIZE);
    
    // Free memory
    if (munmap(huge_data, ARRAY_SIZE) {
        perror("munmap");
    }
    
    return 0;
}

3. Compiling and Running

Compile the program with:

bash 复制代码
gcc -o hugepage_demo hugepage_demo.c

Run it with:

bash 复制代码
./hugepage_demo

4. Verifying Huge Page Usage

Check huge page usage after running your program:

bash 复制代码
cat /proc/meminfo | grep Huge

5. Important Notes

  1. Permissions: Your program may need appropriate permissions to use huge pages.

  2. Page Size: Default huge page size is typically 2MB. 1GB pages are also available on some systems.

  3. Allocation: Huge page allocation must be contiguous in physical memory.

  4. Transparent Huge Pages (THP) : Linux also supports THP which automatically promotes regular pages to huge pages. Enable with:

    bash 复制代码
    echo "always" | sudo tee /sys/kernel/mm/transparent_hugepage/enabled

6. When to Use Huge Pages

Huge pages are particularly beneficial for:

  • Large in-memory databases
  • Scientific computing applications
  • Big data processing frameworks
  • Any memory-intensive application processing large datasets

The performance improvement comes from reduced TLB pressure and fewer page faults when working with large datasets.


资料

Understanding Huge Pages: Optimizing Memory Usage
Linux HugePages(大内存页) 原理与使用
Performance Benefits of Using Huge Pages for Code
Optimizing Linux for AMD EPYC™ 9005 Series Processors with SUSE Linux Enterprise 15 SP6

相关推荐
wdfk_prog1 小时前
[Linux]学习笔记系列 -- [drivers][input]input
linux·笔记·学习
七夜zippoe1 小时前
CANN Runtime任务描述序列化与持久化源码深度解码
大数据·运维·服务器·cann
盟接之桥1 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
忆~遂愿2 小时前
ops-cv 算子库深度解析:面向视觉任务的硬件优化与数据布局(NCHW/NHWC)策略
java·大数据·linux·人工智能
湘-枫叶情缘2 小时前
1990:种下那棵不落叶的树-第6集 圆明园的对话
linux·系统架构
Fcy6483 小时前
Linux下 进程(一)(冯诺依曼体系、操作系统、进程基本概念与基本操作)
linux·运维·服务器·进程
袁袁袁袁满3 小时前
Linux怎么查看最新下载的文件
linux·运维·服务器
代码游侠3 小时前
学习笔记——设备树基础
linux·运维·开发语言·单片机·算法
Gary Studio3 小时前
rk芯片驱动编写
linux·学习
mango_mangojuice3 小时前
Linux学习笔记(make/Makefile)1.23
java·linux·前端·笔记·学习