XML标签格式转换为YOLO TXT格式

针对的是多边形(<polygon>)来描述对象的边界,而不是传统的矩形框(<bndbox>

python 复制代码
import xml.etree.ElementTree as ET
import os
from pathlib import Path

# 解析VOC格式的XML文件,提取目标框的标签和坐标
def parse_voc_xml(xml_file):
    tree = ET.parse(xml_file)
    root = tree.getroot()

    # 获取图像的宽度和高度
    size = root.find('size')
    img_width = int(size.find('width').text)
    img_height = int(size.find('height').text)

    bboxes = []
    for obj in root.findall('object'):
        label = obj.find('name').text  # 获取目标的标签
        polygon = obj.find('polygon')  # 获取多边形的坐标

        # 获取多边形的所有顶点坐标
        x_coords = []
        y_coords = []
        for i in range(1, 5):  # 假设最多4个点(也可以扩展)
            x_coords.append(int(polygon.find(f'x{i}').text))
            y_coords.append(int(polygon.find(f'y{i}').text))

        # 计算边界框(最小矩形框)的坐标
        xmin = min(x_coords)
        xmax = max(x_coords)
        ymin = min(y_coords)
        ymax = max(y_coords)

        # 将 VOC 格式的坐标转换为 YOLO 格式
        x_center = (xmin + xmax) / 2
        y_center = (ymin + ymax) / 2
        width = xmax - xmin
        height = ymax - ymin

        # 归一化坐标
        x_center /= img_width
        y_center /= img_height
        width /= img_width
        height /= img_height

        bboxes.append((label, x_center, y_center, width, height))
    
    return bboxes, img_width, img_height

# 将标签保存为 YOLO 格式
def save_yolo_labels(image_filename, bboxes, output_dir):
    # YOLO 标签文件的路径
    txt_filename = os.path.join(output_dir, Path(image_filename).stem + '.txt')
    
    with open(txt_filename, 'w') as f:
        for label, x_center, y_center, width, height in bboxes:
            # YOLO 格式为:<class_id> <x_center> <y_center> <width> <height>
            # 假设标签的类别是数字(如果是字符串,则需要将类别转换为数字映射)
            f.write(f"{label} {x_center} {y_center} {width} {height}\n")

# 主函数:将 VOC XML 文件转换为 YOLO 格式
def convert_voc_to_yolo(voc_xml_dir, output_dir, class_mapping):
    # 如果输出目录不存在,则创建
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    # 遍历所有 XML 文件
    for xml_file in Path(voc_xml_dir).glob('*.xml'):
        print(f"Processing {xml_file}")
        # 解析 VOC XML 文件
        bboxes, img_width, img_height = parse_voc_xml(xml_file)
        
        # 将标签转化为 YOLO 格式,且需要使用数字类别而不是字符串
        bboxes = [(class_mapping[label], x_center, y_center, width, height) for label, x_center, y_center, width, height in bboxes]
        
        # 保存 YOLO 格式的标签
        save_yolo_labels(xml_file.stem + '.jpg', bboxes, output_dir)  # 假设图像文件与XML文件同名,后缀为 .jpg

# 主程序入口
if __name__ == "__main__":
    # 输入目录:包含VOC XML标注文件的目录
    voc_xml_dir = './original/labels'  # 替换为 VOC XML 文件目录路径
    # 输出目录:YOLO 格式标签文件的存储目录
    output_dir = './original/save'  # 替换为 YOLO 标签文件存储目录路径

    # 类别映射:将VOC中的标签名映射为数字类别
    class_mapping = {
        'car': 0,  
        'truck': 1,
        'bus': 2,
        'motorcycle': 3,
        'van': 4,
        'freight_car': 5,
    }

    # 转换 VOC 格式标签为 YOLO 格式
    convert_voc_to_yolo(voc_xml_dir, output_dir, class_mapping)
# 'car', 'truck', 'bus', 'motorcycle', 'van', 'freight_car'
相关推荐
小鸡吃米…7 分钟前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫44 分钟前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)1 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan1 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维1 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS1 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd1 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟2 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然2 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
旅途中的宽~2 小时前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1