题目
设 r , s , t r, s, t r,s,t 是三个互不相同的数,且 A = { r , s , t } A = \{r, s, t\} A={r,s,t}, B = { r 2 , s 2 , t 2 } B = \{r^2, s^2, t^2\} B={r2,s2,t2}, C = { r s , s t , r t } C = \{rs, st, rt\} C={rs,st,rt}
若 A = B = C A = B = C A=B=C
则 { r , s , t } = { 1 , ω , ω 2 } \{r, s, t\} = \{1, \omega, \omega^2\} {r,s,t}={1,ω,ω2}其中 ω = − 1 ± 3 i 2 \omega = \frac{-1 \pm \sqrt{3}\mathrm{i}}{2} ω=2−1±3 i, i \mathrm{i} i 是虚数单位。
解析
由集合相等知道:
r + s + t = r 2 + s 2 + t 2 = r s + s t + r t = K r+s+t=r^2+s^2+t^2=rs+st+rt=K r+s+t=r2+s2+t2=rs+st+rt=K
有三元完全平方公式可得:
( r + s + t ) 2 = ( r 2 + s 2 + t 2 ) + ( r s + s t + r t ) \left(r+s+t\right)^2=(r^2+s^2+t^2)+(rs+st+rt) (r+s+t)2=(r2+s2+t2)+(rs+st+rt)
得到:
K 2 = 3 K K^2=3K K2=3K
故: K = 0 或 K = 3 K=0\text{或}K=3 K=0或K=3
再从乘积关系:
r s t = ( r s t ) 2 ⇒ r s t = 1 rst=(rst)^2 \Rightarrow rst=1 rst=(rst)2⇒rst=1
由三元方程组的韦达定理:
当 K = 0 K=0 K=0的时候, r , s , t r,s,t r,s,t是方程:
x 3 − 1 = 0 x^{3}-1=0 x3−1=0的三个根: x 1 = − 1 + 3 i 2 , x 2 = − 1 − 3 i 2 , x 3 = 1 x_1=\frac{-1 + \sqrt{3}\mathrm{i}}{2},x_2=\frac{-1 - \sqrt{3}\mathrm{i}}{2},x_3=1 x1=2−1+3 i,x2=2−1−3 i,x3=1
当 K = 3 K=3 K=3的时候, r , s , t r,s,t r,s,t是方程:
x 3 − 3 x 2 + 3 x − 1 = 0 x^{3}-3x^2+3x-1=0 x3−3x2+3x−1=0的三个根
x i = 1 , i = 1 , 2 , 3 x_i=1,i=1,2,3 xi=1,i=1,2,3舍去。