C. The Legend of Freya the Frog

time limit per test

2 seconds

memory limit per test

256 megabytes

Freya the Frog is traveling on the 2D coordinate plane. She is currently at point (0,0)(0,0) and wants to go to point (x,y)(x,y). In one move, she chooses an integer dd such that 0≤d≤k0≤d≤k and jumps dd spots forward in the direction she is facing.

Initially, she is facing the positive xx direction. After every move, she will alternate between facing the positive xx direction and the positive yy direction (i.e., she will face the positive yy direction on her second move, the positive xx direction on her third move, and so on).

What is the minimum amount of moves she must perform to land on point (x,y)(x,y)?

Input

The first line contains an integer tt (1≤t≤1041≤t≤104) --- the number of test cases.

Each test case contains three integers xx, yy, and kk (0≤x,y≤109,1≤k≤1090≤x,y≤109,1≤k≤109).

Output

For each test case, output the number of jumps Freya needs to make on a new line.

Example

Input

Copy

复制代码

3

9 11 3

0 10 8

1000000 100000 10

Output

Copy

复制代码
8
4
199999

Note

In the first sample, one optimal set of moves is if Freya jumps in the following way: (0,00,0) →→ (2,02,0) →→ (2,22,2) →→ (3,23,2) →→ (3,53,5) →→ (6,56,5) →→ (6,86,8) →→ (9,89,8) →→ (9,119,11). This takes 8 jumps.

解题说明:此题是一道数学题,交替向上向右走,可以不走,请问到给定点需要走几次。由于可以走0步,所以向上走和向右走是相互独立的,只需要求出他们的最大值即可。注意走0步的移动也要统计在内。

cpp 复制代码
#include <iostream>
#include<algorithm>
using namespace std;

void solve()
{
	long long x, y, k;
	cin >> x >> y >> k;
	long long ansx = x / k + (x % k != 0), ansy = y / k + (y % k != 0);
	if (ansx > ansy)
	{
		cout << 2ll * ansx - 1 << endl;
	}
	else
	{
		cout << 2ll * ansy << endl;
	}
}
int main()
{
	int TT = 1;
	cin >> TT;
	while (TT--)
	{
		solve();
	}
	return 0;
}
相关推荐
像风一样自由20202 分钟前
Go语言入门指南-从零开始的奇妙之旅
开发语言·后端·golang
CoderYanger1 小时前
前端基础——CSS练习项目:百度热榜实现
开发语言·前端·css·百度·html·1024程序员节
虾..2 小时前
C++ 哈希
开发语言·c++·哈希算法
liu****2 小时前
14.日志封装和线程池封装
linux·开发语言·c++
青青草原羊村懒大王2 小时前
python基础知识三
开发语言·python
将编程培养成爱好2 小时前
C++ 设计模式《统计辅助功能》
开发语言·c++·设计模式·访问者模式
fie88892 小时前
基于循环谱分析的盲源分离信号处理MATLAB
开发语言·matlab·信号处理
kgduu2 小时前
go-ethereum之rpc
开发语言·rpc·golang
小刘爱玩单片机3 小时前
【stm32协议外设篇】- PAJ7620手势识别传感器
c语言·stm32·单片机·嵌入式硬件
yong99903 小时前
MATLAB倍频转换效率分析与最佳匹配角模拟
开发语言·前端·matlab