【深度学习】不管理论,入门从手写数字识别开始

1. 环境安装

学习深度学习,开发语言是Python。Python开发工具有很多。其中 anaconda + vscode的Python开发环境很好用,建议使用这个组合。

编写手写数字识别测试代码,需要在使用Anaconda安装以下4个库:

  • Numpy
  • Scipy
  • matplotlib
  • scikit-learn

2. 手写数字识别

我觉得不管看不看得懂理论,至少要把代码敲一遍。

手写数字识别是最经典和入门的深度学习编程案例,一定要自己亲自敲一遍,每一行都要弄懂在做什么。

下面是贴上我写的代码和注释。

python 复制代码
import numpy as np
from sklearn.datasets import load_digits
from sklearn.neural_network import MLPClassifier

# 加载数据集
d = load_digits()
digits = d["data"]
labels = d["target"]

N = 200

# 打乱数据集的顺序
sorted_idxes = np.argsort(np.random.random(len(labels)))

# 取出前N个作为测试数据
test_key, test_value = digits[sorted_idxes[:N]], labels[sorted_idxes[:N]]

# 后面的数据作为训练数据
train_key, train_value = digits[sorted_idxes[N:]], labels[sorted_idxes[N:]]

# 分类,也就是神经网络训练
clf = MLPClassifier(hidden_layer_sizes=(128,)) 
clf.fit(test_key, test_value)

# 模型评估
score = clf.score(test_key, test_value) # 计算测试集准确率,这个函数会调用predict获取预测结果,再和答案做比较,计算出得分。

# 预测
predict_value = clf.predict(test_key) # 生成预测结果,这一步其实上一步已经做过了,这里是为了计算偏差才重新算一次

# 计算偏差
err = np.where(test_value != predict_value)[0]

# 打印结果
print("socre:", score)
print("errors:", err)
print(" actual:", test_value[err])
print(" predicted:",  predict_value[err])

3. 总结

通过第一个深度学习案例,能够总体掌握代码结构和流程。理论虽然还差很多,但是大体上能够对深度学习有大概的印象。深度学习大体上做的事情,就是从已有数据中发现规律,利用这个规律,再对新的输入数据进行响应,由经验数据预测/计算出新的结果。当已有数据非常非常多的时候,预测/计算的准确率理论上来说应该会越来越高,但是能够达到100%?我觉得只能是逼近100%,做不到100%。

相关推荐
opentrending4 小时前
Github 热点项目 awesome-mcp-servers MCP 服务器合集,3分钟实现AI模型自由操控万物!
服务器·人工智能·github
lisw055 小时前
DeepSeek原生稀疏注意力(Native Sparse Attention, NSA)算法介绍
人工智能·深度学习·算法
whaosoft-1435 小时前
51c深度学习~合集4
人工智能
逢生博客5 小时前
阿里 FunASR 开源中文语音识别大模型应用示例(准确率比faster-whisper高)
人工智能·python·语音识别·funasr
哲讯智能科技6 小时前
智慧能源新篇章:SAP如何赋能光伏行业数字化转型
大数据·人工智能
云卓SKYDROID6 小时前
无人机DSP处理器工作要点!
人工智能·无人机·科普·云卓科技
gang_unerry6 小时前
量子退火与机器学习(2):少量实验即可找到新材料,黑盒优化➕量子退火
人工智能·机器学习·量子计算·量子退火
訾博ZiBo6 小时前
AI日报 - 2025年4月2日
人工智能
说私域6 小时前
消费品行业创新创业中品类创新与数字化工具的融合:以开源 AI 智能客服、AI 智能名片及 S2B2C 商城小程序为例
人工智能·小程序·开源
说私域6 小时前
开源AI大模型赋能的S2B2C商业生态重构研究——基于智能名片系统的体验认知与KOC背书机制
人工智能·小程序·重构·开源