深度学习中常见的专业术语汇总

本硕博都是搞机械的匠人,当然也想做一下交叉学科的东西,蹭一下人工智能的热点。虽然世界是个草台班子,但是来都来了,咱也要把这场戏演好。

记得之前网上爆料有位大学生发了很多水文,对,是交叉学科的,把CS的东西用到自己的专业上。由于出名了,论文就立马受到各大网友关注,离谱的是有个SSIM(FID?越小越好)指标本来是越大越好,上界是1,结果论文列出的结果大于1。

因此,水归水,打好基础还是必要的,毕竟磨刀不误砍柴工,读了博士在打工也不迟。

Pipeline、Framework、Structure、Architecture

  • Pipeline:指的是一系列数据处理步骤或任务的集合。在机器学习项目中,pipeline可能包括数据收集、清洗、特征提取和模型训练等步骤。
  • Framework:指的是为解决一类特定问题而设计的预制结构或方法集合。
  • Structure:深度学习模型的网络结构,即具体的网络结构。
  • Architecture:比structure 更高一级,强调模型的整体设计,如整体拓扑结构。

Baseline 、Benchmark

  • Baseline:传统或已有的方法,作为新方法改进的参照。如果新方法在指标上超过baseline,就说明有进步。
  • Benchmark:通常指一组标准数据集或者评价指标,用于测试和比较不同方法的性能。

Backbone、Neck 、Head

  • Backbone:特征提取主干,常见的有CNN、ResNet等,负责抽取原始数据中的关键信息。
  • Neck:介于backbone和head之间的网络,一般指中间层,用于对来自backbone的输出进行降维或者调整。
  • Head:指模型的输出层,对来自neck处理后的特征进行输出。对于分类任务,则head可能是一些系列全连接层,并输出最终分类结果。

其他

  • Warmup:在模型训练时前面几个epoch用小的学习率热身,有助于收敛和提升训练的稳定性。一般而言,先用小的学习率热身,然后增大学习率,最后学习率衰减。
  • Bottleneck Layer:如ResNet中,对前一个输入先对通道数降维,然后恢复通道数与输入一致,这种类似瓶颈的结构,称为瓶颈层。
  • Ground truth:在图像分类中, 真实的标签称为ground truth。
相关推荐
pp起床2 小时前
Gen_AI 补充内容 Logit Lens 和 Patchscopes
人工智能·深度学习·机器学习
阿杰学AI2 小时前
AI核心知识91——大语言模型之 Transformer 架构(简洁且通俗易懂版)
人工智能·深度学习·ai·语言模型·自然语言处理·aigc·transformer
芷栀夏3 小时前
CANN ops-math:筑牢 AI 神经网络底层的高性能数学运算算子库核心实现
人工智能·深度学习·神经网络
Yeats_Liao6 小时前
评估体系构建:基于自动化指标与人工打分的双重验证
运维·人工智能·深度学习·算法·机器学习·自动化
Tadas-Gao6 小时前
缸中之脑:大模型架构的智能幻象与演进困局
人工智能·深度学习·机器学习·架构·大模型·llm
2301_818730566 小时前
transformer(上)
人工智能·深度学习·transformer
木枷6 小时前
Online Process Reward Learning for Agentic Reinforcement Learning
人工智能·深度学习·机器学习
陈天伟教授7 小时前
人工智能应用- 语言处理:02.机器翻译:规则方法
人工智能·深度学习·神经网络·语言模型·自然语言处理·机器翻译
却道天凉_好个秋7 小时前
Tensorflow数据增强(三):高级裁剪
人工智能·深度学习·tensorflow
Lun3866buzha7 小时前
【深度学习应用】鸡蛋裂纹检测与分类:基于YOLOv3的智能识别系统,从图像采集到缺陷分类的完整实现
深度学习·yolo·分类