Python调用手机摄像头检测火焰烟雾的三种方法

方法1:使用IP摄像头应用 + OpenCV

  1. 在手机上安装IP摄像头应用(如IP Webcam for Android)

  2. 配置应用并启动服务器

  3. 在Python中使用OpenCV连接

import cv2

import numpy as np

手机IP摄像头URL(替换为你的手机IP和端口)

url = "http://192.168.x.x:8080/video"

连接摄像头

cap = cv2.VideoCapture(url)

while True:

ret, frame = cap.read()

if not ret:

print("无法获取视频流")

break

转换为HSV颜色空间(火焰和烟雾检测常用)

hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

火焰颜色范围(HSV)

lower_flame = np.array([0, 100, 100])

upper_flame = np.array([30, 255, 255])

烟雾颜色范围(可能需要调整)

lower_smoke = np.array([0, 0, 100])

upper_smoke = np.array([180, 50, 200])

创建火焰和烟雾的掩膜

flame_mask = cv2.inRange(hsv, lower_flame, upper_flame)

smoke_mask = cv2.inRange(hsv, lower_smoke, upper_smoke)

检测火焰

flame_pixels = cv2.countNonZero(flame_mask)

if flame_pixels > 1000: # 阈值可根据实际情况调整

cv2.putText(frame, "FLAME DETECTED!", (10, 30),

cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)

检测烟雾

smoke_pixels = cv2.countNonZero(smoke_mask)

if smoke_pixels > 1000: # 阈值可根据实际情况调整

cv2.putText(frame, "SMOKE DETECTED!", (10, 70),

cv2.FONT_HERSHEY_SIMPLEX, 1, (150, 150, 150), 2)

显示结果

cv2.imshow('Fire and Smoke Detection', frame)

if cv2.waitKey(1) & 0xFF == ord('q'):

break

cap.release()

cv2.destroyAllWindows()

方法2:使用DroidCam + Python

  1. 在手机和电脑上安装DroidCam

  2. 连接后使用类似上面的OpenCV代码处理视频流

方法3:使用更高级的深度学习模型

对于更准确的检测,可以使用预训练的深度学习模型:

import cv2

import numpy as np

from tensorflow.keras.models import load_model

加载预训练模型(需要先训练或下载合适的模型)

model = load_model('fire_smoke_detection_model.h5')

连接摄像头(同上)

cap = cv2.VideoCapture("http://192.168.x.x:8080/video")

while True:

ret, frame = cap.read()

if not ret:

break

预处理图像

resized = cv2.resize(frame, (224, 224))

normalized = resized / 255.0

input_img = np.expand_dims(normalized, axis=0)

预测

predictions = model.predict(input_img)

fire_prob, smoke_prob = predictions[0]

显示结果

if fire_prob > 0.7:

cv2.putText(frame, f"FIRE: {fire_prob:.2f}", (10, 30),

cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)

if smoke_prob > 0.7:

cv2.putText(frame, f"SMOKE: {smoke_prob:.2f}", (10, 70),

cv2.FONT_HERSHEY_SIMPLEX, 1, (150, 150, 150), 2)

cv2.imshow('Detection', frame)

if cv2.waitKey(1) == ord('q'):

break

cap.release()

cv2.destroyAllWindows()

注意事项:

  1. 颜色阈值:火焰和烟雾的颜色范围可能需要根据实际环境调整

  2. 性能优化:在手机上实时处理可能需要降低分辨率或帧率

  3. 网络延迟:Wi-Fi连接质量会影响实时性

  4. 准确率:简单颜色检测误报率高,深度学习模型更准确但需要更多资源

  5. 光线条件:检测效果受环境光线影响较大

进阶改进方向:

  1. 使用背景减除技术提高烟雾检测准确率

  2. 结合运动检测减少误报

  3. 使用YOLO或MobileNet等轻量级目标检测模型

  4. 添加报警功能(声音、通知等)

  5. 实现云存储检测记录

相关推荐
TDengine (老段)9 分钟前
TDengine Python 连接器入门指南
大数据·数据库·python·物联网·时序数据库·tdengine·涛思数据
田里的水稻34 分钟前
C++_python_相互之间的包含调用方法
c++·chrome·python
2501_9418705639 分钟前
面向微服务熔断与流量削峰策略的互联网系统稳定性设计与多语言工程实践分享
开发语言·python
GIS之路1 小时前
GDAL 实现矢量裁剪
前端·python·信息可视化
IT=>小脑虎1 小时前
Python零基础衔接进阶知识点【详解版】
开发语言·人工智能·python
智航GIS1 小时前
10.6 Scrapy:Python 网页爬取框架
python·scrapy·信息可视化
清水白石0082 小时前
解构异步编程的两种哲学:从 asyncio 到 Trio,理解 Nursery 的魔力
运维·服务器·数据库·python
山海青风2 小时前
图像识别零基础实战入门 1 计算机如何“看”一张图片
图像处理·python
彼岸花开了吗3 小时前
构建AI智能体:八十、SVD知识整理与降维:从数据混沌到语义秩序的智能转换
人工智能·python·llm
MM_MS3 小时前
Halcon图像锐化和图像增强、窗口的相关算子
大数据·图像处理·人工智能·opencv·算法·计算机视觉·视觉检测