介绍FRAMES:一个统一的检索增强生成评估框架

引言

大型语言模型(LLMs)在认知任务上取得了显著进步,检索增强生成(RAG)技术成为提升模型性能的重要方法。然而,现有的评估方法往往孤立地测试模型的检索能力、事实性和推理能力,无法全面反映模型在真实场景中的表现。为了解决这一问题,谷歌DeepMind和哈佛大学的研究团队提出了FRAMES(Factuality, Retrieval, And reasoning MEasurement Set),这是一个高质量的数据集,旨在统一评估RAG系统的核心能力。

FRAMES的核心特点

FRAMES数据集包含824个具有挑战性的多跳问题,每个问题需要整合多个维基百科文章的信息才能回答。这些问题覆盖了历史、体育、科学、动物、健康等多个领域,并涉及以下五种推理类型:

  1. 数值推理:涉及计数、比较或计算。
  2. 表格推理:需要分析维基百科中的表格或信息框。
  3. 多重约束:问题包含多个约束条件,其交集指向唯一答案。
  4. 时间推理:涉及时间线的推理。
  5. 后处理:在收集所有必要事实后,需要进行特定处理(如单位转换或格式调整)。

FRAMES的独特之处在于它首次将事实性、检索能力和推理能力整合到一个统一的评估框架中,填补了现有基准测试的空白。

数据集构建过程

研究团队首先尝试通过LLM生成合成数据,但发现超过30%的问题存在幻觉或错误。因此,他们转向人工标注,由专家团队设计问题,并确保每个问题需要2到15篇维基百科文章才能回答。此外,团队还实施了严格的质量检查,包括:

  • 验证答案的正确性和基于维基百科的可靠性。
  • 添加时间上下文以避免歧义(例如"截至2024年8月1日")。
  • 避免二元答案问题,防止模型通过随机猜测获得高分。

实验结果

研究团队对多个先进LLM(如Gemini-Pro、Gemini-Flash、Gemma2等)进行了评估,结果如下:

  1. 单步评估

    • 在没有检索的情况下,Gemini-Pro的准确率仅为0.408。
    • 通过BM25检索相关文章后,准确率提升至0.474。
    • 当提供所有相关文章(Oracle Prompt)时,准确率达到0.729,但模型在数值推理、表格推理和后处理任务上仍表现不佳。
  2. 多步评估

    • 通过多步检索和推理,模型的准确率显著提升至0.66(接近Oracle性能)。
    • 改进的关键在于为模型提供搜索规划指令,例如避免重复查询和分步思考。

意义与未来方向

FRAMES为RAG系统的评估提供了更全面的基准,揭示了当前模型在复杂推理任务上的局限性。未来研究方向包括:

  • 开发更高效的检索策略(如基于ColBERT或SimCSE的密集检索器)。
  • 提升模型的推理能力(如通过过程监督或蒸馏技术)。
  • 扩展数据集以涵盖更多领域和动态信息。

结论

FRAMES是评估RAG系统的重要一步,它不仅帮助研究者更准确地衡量模型性能,还为改进检索和推理能力提供了明确方向。随着RAG技术在现实应用中的普及,这样的综合评估框架将变得越来越重要。

数据集链接Hugging Face
论文作者:Satyapriya Krishna, Kalpesh Krishna, Anhad Mohananey等

相关推荐
雾削木1 天前
AI文献提示词prompts
人工智能
~kiss~1 天前
大模型中激活函数、前馈神经网络 (FFN) 的本质
人工智能·深度学习·神经网络
老兵发新帖1 天前
推理平台ONNX性能对比PyTorch原生格式
人工智能
犀思云1 天前
企业端到端NaaS连接的优势与应用
网络·人工智能·机器人·智能仓储·专线
Keep_Trying_Go1 天前
基于GAN的文生图算法详解ControlGAN(Controllable Text-to-Image Generation)
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·文生图
Spey_Events1 天前
星箭聚力启盛会,2026第二届商业航天产业发展大会暨商业航天展即将开幕!
大数据·人工智能
JoySSLLian1 天前
IP SSL证书:一键解锁IP通信安全,高效抵御网络威胁!
网络·人工智能·网络协议·tcp/ip·ssl
AC赳赳老秦1 天前
专利附图说明:DeepSeek生成的专业技术描述与权利要求书细化
大数据·人工智能·kafka·区块链·数据库开发·数据库架构·deepseek
小雨青年1 天前
鸿蒙 HarmonyOS 6 | AI Kit 集成 Core Speech Kit 语音服务
人工智能·华为·harmonyos
懒羊羊吃辣条1 天前
电力负荷预测怎么做才不翻车
人工智能·深度学习·机器学习·时间序列