一、引言
在 AI Agent 生态蓬勃发展的 2025 年,MCP协议成为连接不同智能体的技术桥梁。作为开发者,我一直对这个能够实现 AI 模型间无缝通信的协议充满好奇。通过官方文档的学习,我了解到 MCP 服务端不仅是协议的核心载体,更是构建智能体协作网络的基石。为了深入理解其工作原理,我决定按照官方文档从零开始搭建一个基于天气查询的 MCP 服务,并在客户端调用过程中经历了一段充满挑战的技术探索之旅。
二、环境搭建
工欲善其事,必先利其器。根据官方指南,我首先完成了以下环境配置:
首先是安装uv,如果有Python环境的话很简单,一句话就搞定了。
shell
pip install uv
三、编写MCP服务代码
1、基础方法
先导入依赖,编写发送请求的基础方法以及格式化天气信息的方法
python
from typing import Any
import httpx
from mcp.server.fastmcp import FastMCP
# 初始化FastMCP server
mcp = FastMCP("weather")
# 定义常量
NWS_API_BASE = "https://api.weather.gov"
USER_AGENT = "weather-app/1.0"
async def make_nws_request(url: str) -> dict[str, Any] | None:
"""
发送一个请求到NWS API,并进行适当的错误处理。
"""
headers = {
"User-Agent": USER_AGENT,
"Accept": "application/geo+json",
}
async with httpx.AsyncClient() as client:
try:
response = await client.get(url, headers=headers, timeout=60.0)
response.raise_for_status()
return response.json()
except httpx.RequestError as e:
print(f"Request error: {e}")
except httpx.HTTPStatusError as e:
print(f"HTTP error: {e}")
except Exception as e:
print(f"Unexpected error: {e}")
return None
def format_alert(feature: dict) -> str:
"""
将天气警报信息格式化为一个可读的字符串。
"""
props = feature["properties"]
event = props.get("event", "未知事件")
area = props.get("areaDesc", "未知区域")
severity = props.get("severity", "未知严重性")
description = props.get("description", "无描述")
instructions = props.get("instruction", "无说明")
return f"""
事件: {event}
区域: {area}
严重性: {severity}
描述: {description}
说明: {instructions}
"""
2、mcp接口
然后编写两个mcp接口方法,get_alerts
获取天气警报,get_forecast
获取天气预报,注意要用mcp.tool
装饰。
python
@mcp.tool()
async def get_alerts(state: str) -> str:
"""
获取指定州的天气警报。
"""
url = f"{NWS_API_BASE}/alerts/active/area={state}"
data = await make_nws_request(url)
if data and "features" in data:
alerts = [format_alert(feature) for feature in data["features"]]
return "\n---\n".join(alerts) if alerts else "没有天气警报。"
return "无法获取天气警报。"
@mcp.tool()
async def get_forecast(latitude: float, longitude: float) -> str:
"""
获取指定经纬度的天气预报。
"""
url = f"{NWS_API_BASE}/points/{latitude},{longitude}"
data = await make_nws_request(url)
if data and "properties" in data:
forecast_url = data["properties"]["forecast"]
forecast_data = await make_nws_request(forecast_url)
if forecast_data and "properties" in forecast_data:
periods = forecast_data["properties"]["periods"]
forecasts = []
for period in periods[:5]:
forecast = f"""
时间: {period['name']}
温度: {period['temperature']}°{period['temperatureUnit']}
风向: {period['windDirection']}
风速: {period['windSpeed']}
详细: {period['detailedForecast']}
"""
forecasts.append(forecast)
return "\n---\n".join(forecasts) if forecasts else "没有天气预报。"
return "无法获取天气预报。"
3、完整代码
python
from typing import Any
import httpx
from mcp.server.fastmcp import FastMCP
# 初始化FastMCP server
mcp = FastMCP("weather")
# 定义常量
NWS_API_BASE = "https://api.weather.gov"
USER_AGENT = "weather-app/1.0"
async def make_nws_request(url: str) -> dict[str, Any] | None:
"""
发送一个请求到NWS API,并进行适当的错误处理。
"""
headers = {
"User-Agent": USER_AGENT,
"Accept": "application/geo+json",
}
async with httpx.AsyncClient() as client:
try:
response = await client.get(url, headers=headers, timeout=60.0)
response.raise_for_status()
return response.json()
except httpx.RequestError as e:
print(f"Request error: {e}")
except httpx.HTTPStatusError as e:
print(f"HTTP error: {e}")
except Exception as e:
print(f"Unexpected error: {e}")
return None
def format_alert(feature: dict) -> str:
"""
将天气警报信息格式化为一个可读的字符串。
"""
props = feature["properties"]
event = props.get("event", "未知事件")
area = props.get("areaDesc", "未知区域")
severity = props.get("severity", "未知严重性")
description = props.get("description", "无描述")
instructions = props.get("instruction", "无说明")
return f"""
事件: {event}
区域: {area}
严重性: {severity}
描述: {description}
说明: {instructions}
"""
@mcp.tool()
async def get_alerts(state: str) -> str:
"""
获取指定州的天气警报。
"""
url = f"{NWS_API_BASE}/alerts/active/area={state}"
data = await make_nws_request(url)
if data and "features" in data:
alerts = [format_alert(feature) for feature in data["features"]]
return "\n---\n".join(alerts) if alerts else "没有天气警报。"
return "无法获取天气警报。"
@mcp.tool()
async def get_forecast(latitude: float, longitude: float) -> str:
"""
获取指定经纬度的天气预报。
"""
url = f"{NWS_API_BASE}/points/{latitude},{longitude}"
data = await make_nws_request(url)
if data and "properties" in data:
forecast_url = data["properties"]["forecast"]
forecast_data = await make_nws_request(forecast_url)
if forecast_data and "properties" in forecast_data:
periods = forecast_data["properties"]["periods"]
forecasts = []
for period in periods[:5]:
forecast = f"""
时间: {period['name']}
温度: {period['temperature']}°{period['temperatureUnit']}
风向: {period['windDirection']}
风速: {period['windSpeed']}
详细: {period['detailedForecast']}
"""
forecasts.append(forecast)
return "\n---\n".join(forecasts) if forecasts else "没有天气预报。"
return "无法获取天气预报。"
if __name__ == "__main__":
# 初始化及运行服务
mcp.run(transport="stdio")
四、客户端调用
Claude桌面应用当然是我们的首选,但在安装登录后,很不幸,由于地区限制,我的账号无法使用。
接下来我尝试了最近一直在用的AI工具Cherry Studio,按照文档我完成了mcp配置,但却一直提示启动失败,我在命令行中执行了启动mcp服务的命令,发现uvx不支持直接运行py文件,而且Cherry Studio不支持uv命令。
最后我只能尝试一下一直在用的AI代码编辑器Cursor。
Cursor添加MCP服务非常简单,就是编写一个mcp的配置文件。
json
{
"mcpServers": {
"bfgDcOhO_98WWPcPd3HXu": {
"name": "MCP 服务器 - demo",
"description": "mcp demo ",
"isActive": false,
"command": "uv",
"args": [
"run",
"/Users/rainstop_3/mcp-demo/weather/weather.py"
]
}
}
}
这次终于成功了!赶快试一下,可以清楚地看到回复中调用了MCP tool,第一次调用的是get_alerts接口,没有返回结果,第二次调用了get_forecast接口,返回了天气信息。
五、总结
总体上来说MCP并不难理解,也比较容易上手,可以想象到未来很多接口都会以MCP的方式开放共各种AI智能体来调用,这将成为产品的一种新形态。