🤖 LangGraph 多智能体群集

LangGraph 多智能体群集是一种 Python 库,用于创建基于 LangGraph 的多智能体系统。这种系统允许智能体根据其专业化动态地将控制权交给彼此,并记住最后活跃的智能体,以便在后续交互中继续对话。

基础概念

  • 多智能体协作:不同智能体可以合作并将上下文传递给彼此。
  • 可定制的交接工具:内置工具用于智能体之间的通信。

安装和快速开始

  1. 安装库

    bash 复制代码
    pip install langgraph-swarm langchain-openai
  2. 设置 OpenAI API

    bash 复制代码
    export OPENAI_API_KEY=
  3. 创建智能体

    python 复制代码
    from langchain_openai import ChatOpenAI
    from langgraph.checkpoint.memory import InMemorySaver
    from langgraph.prebuilt import create_react_agent
    from langgraph_swarm import create_handoff_tool, create_swarm
    
    # 创建模型
    model = ChatOpenAI(model="gpt-4o")
    
    # 定义加法函数
    def add(a: int, b: int) -> int:
        return a + b
    
    # 创建 Alice 智能体
    alice = create_react_agent(
        model,
        [add, create_handoff_tool(agent_name="Bob")],
        prompt="You are Alice, an addition expert.",
        name="Alice",
    )
    
    # 创建 Bob 智能体
    bob = create_react_agent(
        model,
        [create_handoff_tool(agent_name="Alice", description="Transfer to Alice, she can help with math")],
        prompt="You are Bob, you speak like a pirate.",
        name="Bob",
    )
    
    # 创建群集
    checkpointer = InMemorySaver()
    workflow = create_swarm([alice, bob], default_active_agent="Alice")
    app = workflow.compile(checkpointer=checkpointer)
    
    # 与智能体交互
    config = {"configurable": {"thread_id": "1"}}
    turn_1 = app.invoke({"messages": [{"role": "user", "content": "i'd like to speak to Bob"}]}, config)
    print(turn_1)
    turn_2 = app.invoke({"messages": [{"role": "user", "content": "what's 5 + 7?"}]}, config)
    print(turn_2)

内存管理

  • 短期内存 :使用 InMemorySaver 来维持对话状态。
  • 长期内存 :使用 InMemoryStore 来存储历史数据。

自定义

  1. 自定义交接工具

    python 复制代码
    from langchain_core.tools import tool, BaseTool
    from langchain_core.messages import ToolMessage
    from langgraph.types import Command
    
    def create_custom_handoff_tool(*, agent_name: str, tool_name: str, tool_description: str) -> BaseTool:
        @tool(name=tool_name, description=tool_description)
        def handoff_to_agent(task_description: str, state: dict, tool_call_id: str):
            tool_message = ToolMessage(
                content=f"Successfully transferred to {agent_name}",
                name=tool_name,
                tool_call_id=tool_call_id,
            )
            return Command(
                goto=agent_name,
                graph=Command.PARENT,
                update={
                    "messages": [state["messages"][-1], tool_message],
                    "active_agent": agent_name,
                    "task_description": task_description,
                },
            )
    
        return handoff_to_agent
  2. 自定义智能体实现

    python 复制代码
    from langchain_core.messages import AnyMessage
    from langgraph.graph import StateGraph
    
    class AliceState:
        alice_messages: list[AnyMessage]
    
    alice = (
        StateGraph(AliceState)
        .add_node("model", ...)
        .add_node("tools", ...)
        .add_edge(...)
        .compile()
    )
    
    def call_alice(state):
        response = alice.invoke({"alice_messages": state["messages"]})
        return {"messages": response["alice_messages"]}
    
    workflow = (
        StateGraph()
        .add_node("Alice", call_alice, destinations=("Bob",))
        .add_node("Bob", call_bob, destinations=("Alice",))
    )
    workflow = add_active_agent_router(workflow, route_to=["Alice", "Bob"], default_active_agent="Alice")
    app = workflow.compile()

总结

LangGraph 多智能体群集提供了一个灵活的框架,用于创建多智能体系统。通过自定义交接工具和智能体实现,可以满足不同应用场景的需求。同时,内存管理对于维持对话状态至关重要。

相关推荐
ones~1 天前
软件体系架构(三)
学习·架构·软件工程
程途拾光1581 天前
企业组织架构图导出Word 在线编辑免费工具
大数据·论文阅读·人工智能·信息可视化·架构·word·流程图
阿里嘎多学长1 天前
2025-12-15 GitHub 热点项目精选
开发语言·程序员·github·代码托管
熊出没1 天前
高并发下的图片上传问题处理
微服务·架构
g***B7381 天前
Java 工程复杂性的真正来源:从语言设计到现代架构的全链路解析
java·人工智能·架构
yaoh.wang1 天前
力扣(LeetCode) 13: 罗马数字转整数 - 解法思路
python·程序人生·算法·leetcode·面试·职场和发展·跳槽
西陵1 天前
为什么说 AI 赋能前端开发,已经不是选择题,而是必然趋势?
前端·架构·ai编程
国科安芯1 天前
AS32S601型MCU芯片电源管理(PMU)模块详解
单片机·嵌入式硬件·性能优化·架构·risc-v
六行神算API-天璇1 天前
架构思考:大模型作为医疗科研的“智能中间件”
人工智能·中间件·架构·数据挖掘·ar
济南壹软网络科技有限公司1 天前
企业级盲盒系统:Java高并发架构在多元化抽奖电商中的设计与实践
java·架构·开源源码·盲盒源码·盲盒h5·盲盒app