YOLOv8架构详解

📌YOLOv8架构详解

  • [YOLOv8 架构图](#YOLOv8 架构图)
  • [YOLOv8 Backbone部分](#YOLOv8 Backbone部分)
  • [YOLOv8 Head部分](#YOLOv8 Head部分)

在视觉深度学习中,通常将模型分为 2~3 个组成部分:backbone、neck(可选) 和 head。

  • Backbone (主干网络)负责从输入图像中提取特征,将图像转化为具有丰富语义信息的特征表示。
  • Neck (颈部,连接部)是一个中间层,用于对来自 backbone 的特征进行融合,以提升模型的性能。
  • Head (任务头)是模型的最后一层,其结构会根据不同的任务而有所不同。例如,在图像分类任务中,我们通常会使用 softmax 分类器作为 Head,而在目标检测任务中,我们则可能会使用边界框回归器和分类器作为 Head。

YOLOv8 架构图

关于下面经典的架构图的简要说明:

  • 图的上面部分为 YOLOv8 架构的概要图(包括 Backbone,Head)。YOLOv8 没有使用Neck 这个概念,但其架构图中 Head 中类似 PANet 功能的部分也可以归为 Neck。
  • 图右中位置 Detail 为各个组件的详细架构示例,另说明了不同模型大小的参数选择。
  • 图左 + 图下部分,以分步的方式列出了完整的数据流。
  • 每个框的右上角的数字为层的编号,可以和后面的示例输出 1 对照看。

可以看出,YOLOv8 Backbone 为 0~9 层,10~21 层为 YOLOv8 Head。

YOLOv8 Backbone部分

见图中第 0~9 层。分别为

  • Conv + Conv + C2f
  • Conv + C2f(对齐特征金字塔 P3)
  • Conv + C2f(对齐特征金字塔 P4)
  • Conv + C2f + SPPF(对齐特征金字塔 P5)

YOLOv8 Head部分

Neck和Head结构

第一种解释:

在YOLOv8 的yaml文件中并没有显示地划分出Neck部分,实际上Neck网络结构就是其Head 网络结构中部分的前半部分。

head部分整体图:

yaml 复制代码
head:

  ###neck###
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
  ###########
  
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

yaml配置文件中,注释段落即为Neck结构


第二种解释:

yaml 复制代码
head:

  ###neck###
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
  
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)
  ###########
  
  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

yaml配置文件中,注释段落即为Neck结构,即除去检测头其余部分都是Neck部分

分清楚Neck和Head 部分,可以很方便的对YOLOv8不同部分进行改进,实现任务涨点!


整理不易🚀🚀,关注和收藏后拿走📌📌欢迎留言🧐👋📣
欢迎专注我的公众号AdaCoding 和 Github:AdaCoding123

相关推荐
jay神17 小时前
基于YOLOv8的木材表面缺陷检测系统
人工智能·深度学习·yolo·计算机视觉·毕业设计
我在北京coding18 小时前
yolo无人机海上目标救援 识别检测无人机海上人的目标检测 水上救援SAR-(完整代码+数据集+模型)
yolo·目标检测·无人机
小Tomkk19 小时前
PyTorch +YOLO + Label Studio + 图像识别 深度学习项目实战 (二)
pytorch·深度学习·yolo
Coding茶水间19 小时前
基于深度学习的输电电力设备检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
开发语言·人工智能·深度学习·yolo·目标检测·机器学习
2501_9416012121 小时前
Yolov10n多骨干网络多尺度注意力机制__垃圾分类目标检测系统开发与应用
yolo·目标检测·分类
pen-ai1 天前
【YOLO系列】 YOLOv1 目标检测算法原理详解
算法·yolo·目标检测
FL16238631291 天前
MMA综合格斗动作检测数据集VOC+YOLO格式1780张16类别
人工智能·yolo·机器学习
极智视界2 天前
无人机场景 - 目标检测数据集 - 停车场停车位检测数据集下载
yolo·目标检测·数据集·无人机·voc·coco·算法训练
前网易架构师-高司机2 天前
带标注信息的手机识别数据集,92.8%识别率,可识别户外公共场所的人是否带手机,支持yolo, coco json,pascal voc xml格式
yolo·手机·数据集·公共·户外·携带
Faker66363aaa2 天前
基于YOLOv8-P2的稻田杂草智能分割与识别系统
yolo