MacOS 的 AI Agent 新星,本地沙盒驱动,解锁 macOS 操作新体验!

随着 AI Agent 在 2025 年的爆发式发展,macOS 用户也迎来了一个令人振奋的开源项目:Cua

这款由 trycua 团队打造的计算机使用代理框架,不仅能在 macOS 上开启虚拟机,还能让 AI 在其中操作系统及应用,如浏览器和 VS Code。它支持 OpenAI 和 Anthropic 的 CUA 模型,未来还将兼容 Ollama 本地模型。

Cua 是一个专为 macOS 设计的开源 AI Agent 框架,它基于 Apple 的 Virtualization.Framework,结合高性能虚拟化与 AI 代理能力,允许用户在 Apple Silicon 上创建并运行 macOS 和 Linux 虚拟机。

它的核心在于其"计算机使用接口"(CUI)和代理支持,让 AI 能在隔离环境中操作桌面应用。

无论是浏览网页、编写代码,还是执行复杂任务,Cua 都能让 AI 在 macOS 上如鱼得水。

核心功能
  • 高性能虚拟化:在 Apple Silicon 上运行 macOS/Linux 虚拟机,性能接近原生(90%)。

  • AI 代理操作:支持 AI 在虚拟机中操作 macOS 系统及应用(如浏览器、VS Code)。

  • 安全隔离:所有操作在沙盒化的虚拟环境中运行,保护主机系统。

  • 多应用支持:AI 可操控虚拟机内的多种程序,实现复杂工作流。

  • 兼容多种大模型:目前支持 OpenAI、Anthropic CUA 模型,未来还将支持 Ollama 等本地大模型。

安装与使用

Cua 的安装和使用过程简单,专为 macOS 用户优化。以下是详细步骤:

1、安装 Lume(Cua 的虚拟化基础)

复制代码
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/trycua/cua/main/libs/lume/scripts/install.sh)"

2、安装cua相关的Python库

复制代码
pip install cua-computer cua-agent

3、使用调用示例

复制代码
import logging
from pathlib import Path
from agent import ComputerAgent, LLM, AgentLoop

computer = Computer(verbosity=logging.INFO)

# Create agent with Anthropic loop and provider
agent = ComputerAgent(
        computer=computer,
        loop=AgentLoop.OMNI,
        model=LLM(provider=LLMProvider.ANTHROPIC, name="claude-3-7-sonnet-20250219"),
        # model=LLM(provider=LLMProvider.OPENAI, name="gpt-4.5-preview"),
        save_trajectory=True,
        trajectory_dir=str(Path("trajectories")),
        only_n_most_recent_images=3,
        verbosity=logging.INFO
    )

tasks = [
    "Look for a repository named trycua/cua on GitHub.",
    "Check the open issues, open the most recent one and read it.",
    "Clone the repository in users/lume/projects if it doesn't exist yet.",
    "Open the repository with an app named Cursor (on the dock, black background and white cube icon).",
    "From Cursor, open Composer if not already open.",
    "Focus on the Composer text area, then write and submit a task to help resolve the GitHub issue.",
]

for i, task in enumerate(tasks):
    print(f"\nExecuting task {i}/{len(tasks)}: {task}")
    async for result in agent.run(task):
        # print(result)
        pass

    print(f"\n✅ Task {i+1}/{len(tasks)} completed: {task}")

启动虚拟机命令:

复制代码
lume run macos-sequoia-vanilla:latest

更多用法和 Notebook 示例见 GitHub 文档,几分钟即可体验 AI 操作 macOS 的乐趣。

写在最后

Cua 让 AI 不再只是"聊天机器人",而是能直接动手操作你的 Mac!具备本地虚拟机隔离、性能卓越、模型灵活配置等优点,无论是开发、自动化办公、智能助手,都能极大提升效率。

相关推荐
人工智能训练3 小时前
【极速部署】Ubuntu24.04+CUDA13.0 玩转 VLLM 0.15.0:预编译 Wheel 包 GPU 版安装全攻略
运维·前端·人工智能·python·ai编程·cuda·vllm
源于花海4 小时前
迁移学习相关的期刊和会议
人工智能·机器学习·迁移学习·期刊会议
DisonTangor5 小时前
DeepSeek-OCR 2: 视觉因果流
人工智能·开源·aigc·ocr·deepseek
薛定谔的猫19826 小时前
二十一、基于 Hugging Face Transformers 实现中文情感分析情感分析
人工智能·自然语言处理·大模型 训练 调优
发哥来了6 小时前
《AI视频生成技术原理剖析及金管道·图生视频的应用实践》
人工智能
数智联AI团队6 小时前
AI搜索引领开源大模型新浪潮,技术创新重塑信息检索未来格局
人工智能·开源
不懒不懒6 小时前
【线性 VS 逻辑回归:一篇讲透两种核心回归模型】
人工智能·机器学习
冰西瓜6006 小时前
从项目入手机器学习——(四)特征工程(简单特征探索)
人工智能·机器学习
Ryan老房6 小时前
未来已来-AI标注工具的下一个10年
人工智能·yolo·目标检测·ai
丝斯20117 小时前
AI学习笔记整理(66)——多模态大模型MOE-LLAVA
人工智能·笔记·学习