依赖导入
以 Gradle 为例
添加快照仓库地址
txt
repositories {
maven { url 'https://repo.spring.io/milestone' }
maven { url 'https://repo.spring.io/snapshot' }
}
添加依赖
txt
dependencies {
implementation 'org.springframework.ai:spring-ai-openai-spring-boot-starter:1.0.0-SNAPSHOT'
implementation 'org.springframework.ai:spring-ai-starter-mcp-client:1.0.0-SNAPSHOT'
implementation 'org.springframework.ai:spring-ai-starter-mcp-server-webmvc:1.0.0-SNAPSHOT'
}
构建 Chat Client
创建 Chat Client 并添加工具,使大模型可以调用提供的工具。包括官方已实现的基本工具和自定义实现。
添加官方已实现的基本工具(实现访问本地文件和数据库)
- 向 application.properties 文件中添加以下配置项
properties
spring.ai.mcp.client.stdio.servers-configuration=classpath:/mcp-servers-config.json
- 向 src/main/resources 目录下添加 mcp-servers-config.json 文件
配置中的 npx 使用的为绝对路径
json
{
"mcpServers": {
"filesystem": {
"command": "D:\\nodejs\\22.12.0\\npx.cmd",
"args": [
"-y",
"@modelcontextprotocol/server-filesystem",
"D:\\tmp"
]
},
"postgres": {
"command": "D:\\nodejs\\22.12.0\\npx.cmd",
"args": [
"-y",
"@modelcontextprotocol/server-postgres",
"postgresql://postgres:password@localhost:5432/test"
]
}
}
}
添加自定义实现
- 获取天气(美国地区)信息的工具(Spring AI example 实现)
java
package com.example.mcp.server.service;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;
import org.springframework.ai.tool.annotation.Tool;
import org.springframework.ai.tool.annotation.ToolParam;
import org.springframework.stereotype.Service;
import org.springframework.web.client.RestClient;
import com.fasterxml.jackson.annotation.JsonIgnoreProperties;
import com.fasterxml.jackson.annotation.JsonProperty;
@Service
public class WeatherService {
private static final String BASE_URL = "https://api.weather.gov";
private final RestClient restClient;
public WeatherService() {
this.restClient = RestClient.builder()
.baseUrl(BASE_URL)
.defaultHeader("Accept", "application/geo+json")
.defaultHeader("User-Agent", "WeatherApiClient/1.0 ([email protected])")
.build();
}
@JsonIgnoreProperties(ignoreUnknown = true)
public record Points(@JsonProperty("properties") Props properties) {
@JsonIgnoreProperties(ignoreUnknown = true)
public record Props(@JsonProperty("forecast") String forecast) {
}
}
@JsonIgnoreProperties(ignoreUnknown = true)
public record Forecast(@JsonProperty("properties") Props properties) {
@JsonIgnoreProperties(ignoreUnknown = true)
public record Props(@JsonProperty("periods") List<Period> periods) {
}
@JsonIgnoreProperties(ignoreUnknown = true)
public record Period(@JsonProperty("number") Integer number, @JsonProperty("name") String name,
@JsonProperty("startTime") String startTime, @JsonProperty("endTime") String endTime,
@JsonProperty("isDaytime") Boolean isDayTime, @JsonProperty("temperature") Integer temperature,
@JsonProperty("temperatureUnit") String temperatureUnit,
@JsonProperty("temperatureTrend") String temperatureTrend,
@JsonProperty("probabilityOfPrecipitation") Map probabilityOfPrecipitation,
@JsonProperty("windSpeed") String windSpeed, @JsonProperty("windDirection") String windDirection,
@JsonProperty("icon") String icon, @JsonProperty("shortForecast") String shortForecast,
@JsonProperty("detailedForecast") String detailedForecast) {
}
}
@Tool(description = "根据经度和纬度获取天气预报。")
public String getWeatherForecastByLocation(@ToolParam(description = "纬度") double latitude, @ToolParam(description = "经度") double longitude) {
var points = restClient.get()
.uri("/points/{latitude},{longitude}", latitude, longitude)
.retrieve()
.body(Points.class);
var forecast = restClient.get().uri(points.properties().forecast()).retrieve().body(Forecast.class);
String forecastText = forecast.properties().periods().stream().map(p -> {
return String.format("""
%s:
温度: %s %s
风向: %s %s
天气预报: %s
""", p.name(), p.temperature(), p.temperatureUnit(), p.windSpeed(), p.windDirection(),
p.detailedForecast());
}).collect(Collectors.joining());
return forecastText;
}
}
- 获取本地系统信息工具
java
package com.example.mcp.server.service;
import java.util.HashMap;
import java.util.Map;
import org.springframework.ai.tool.annotation.Tool;
import org.springframework.stereotype.Service;
@Service
public class SystemService {
@Tool(description = "获取本地系统信息,如操作系统名称、版本、Java版本等。")
public Map<String, String> getSystemInfo() {
Map<String, String> info = new HashMap<>();
info.put("os.name", System.getProperty("os.name"));
info.put("os.version", System.getProperty("os.version"));
info.put("os.arch", System.getProperty("os.arch"));
info.put("java.version", System.getProperty("java.version"));
info.put("user.name", System.getProperty("user.name"));
return info;
}
}
- 组装为 ToolCallbackProvider
java
package com.example.mcp.server.config;
import org.springframework.ai.tool.ToolCallbackProvider;
import org.springframework.ai.tool.method.MethodToolCallbackProvider;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import com.example.mcp.server.service.SystemService;
import com.example.mcp.server.service.WeatherService;
@Configuration
public class McpServerConfig {
@Bean
public ToolCallbackProvider customTools(WeatherService weatherService, SystemService systemService) {
return MethodToolCallbackProvider.builder().toolObjects(weatherService, systemService).build();
}
}
配置 Chat Client
- 向 application.properties 文件中添加模型配置(这里使用Sealos AI Proxy)
properties
spring.ai.openai.api-key=your api key
spring.ai.openai.base-url=https://aiproxy.gzg.sealos.run
spring.ai.openai.chat.options.model=qwen-coder-plus
- 添加配置类
java
package com.example.mcp.client.config;
import java.util.List;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.client.advisor.MessageChatMemoryAdvisor;
import org.springframework.ai.chat.client.advisor.SimpleLoggerAdvisor;
import org.springframework.ai.chat.memory.InMemoryChatMemory;
import org.springframework.ai.mcp.SyncMcpToolCallbackProvider;
import org.springframework.ai.tool.ToolCallbackProvider;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import io.modelcontextprotocol.client.McpSyncClient;
import jakarta.annotation.Resource;
@Configuration
public class ChatClientConfig {
@Resource(name = "customTools")
private ToolCallbackProvider customToolCallbackProvider;
@Bean
public ChatClient chatClient(ChatClient.Builder builder, List<McpSyncClient> mcpSyncClients) {
return builder
.defaultAdvisors(new SimpleLoggerAdvisor(), new MessageChatMemoryAdvisor(new InMemoryChatMemory()))
.defaultTools(new SyncMcpToolCallbackProvider(mcpSyncClients))
.defaultTools(customToolCallbackProvider)
.build();
}
}
构建 Chat Rest API
DTO
- ChatRequest
java
package com.example.mcp.client.model;
import lombok.Data;
@Data
public class ChatRequest {
private String message;
}
- ChatResponse
java
package com.example.mcp.client.model;
import lombok.Data;
@Data
public class ChatResponse {
private String content;
}
Controller
- ChatController
java
package com.example.mcp.client.controller;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import com.example.mcp.client.model.ChatRequest;
import com.example.mcp.client.model.ChatResponse;
import jakarta.annotation.Resource;
@RestController
@RequestMapping("/api/chat")
public class ChatController {
@Resource
private ChatClient chatClient;
@PostMapping
public ResponseEntity<ChatResponse> chat(@RequestBody ChatRequest request) {
ChatResponse response = new ChatResponse();
response.setContent(chatClient.prompt().user(request.getMessage()).call().content());
return ResponseEntity.ok(response);
}
}
对话验证
- 有哪些工具可以使用
- 洛杉矶今天天气如何
- 数据中一共有多少张表
- 请在目录D:\tmp下创建空白文件: hello MCP.txt,并写入内容:Hi~