NLP高频面试题(三十三)——Vision Transformer(ViT)模型架构介绍

Transformer架构在自然语言处理领域取得了显著成功,激发了研究人员将其应用于计算机视觉任务的兴趣。Vision Transformer(ViT)应运而生,成为图像分类等视觉任务中的新兴架构。本文将介绍ViT的基本架构、工作原理,并与传统的卷积神经网络进行比较。

ViT的基本架构

ViT的核心思想是将图像视为一系列的补丁(patches),类似于自然语言处理中的词嵌入(word embeddings)。具体步骤如下:

  1. 图像分割为补丁:将输入图像划分为固定大小的补丁,例如16x16像素。这样,一个尺寸为224x224的图像将被分割为14x14=196个补丁。

  2. 补丁展平与嵌入:将每个补丁展平成一维向量,并通过线性变换映射到固定维度的嵌入空间。

  3. 位置编码:由于Transformer缺乏处理位置信息的内在机制,需要为每个补丁添加位置编码,以保留其在原始图像中的位置信息。

  4. Transformer编码器:将嵌入后的补丁序列输入标准的Transformer编码器,进行全局信息的建模和特征提取。

  5. 分类头:在补丁序列前添加一个可学习的分类标记([CLS]),其对应的输出经过全连接层用于最终的分类预测。

ViT的工作原理

ViT利用自注意力机制、计算图像中各补丁之间的关系。自注意力机制能够捕捉全局信息,使模型在处理长距离依赖关系时表现出色。多头自注意力进一步增强了模型的表达能力,使其能够关注输入序列的不同部分,从而学习到更丰富的特征表示。

ViT与卷积神经网络的比较

与传统的卷积神经网络相比,ViT具有以下特点:

  1. 全局信息捕捉:CNN通过局部感受野逐层堆叠来捕捉全局信息,而ViT通过自注意力机制直接建模全局依赖关系。

  2. 数据需求:ViT通常需要大量数据进行预训练,以达到与CNN相当的性能。这是因为ViT缺乏CNN中的局部平移不变性等先验知识,需要通过大量数据学习。

  3. 计算复杂度:ViT的自注意力机制在处理高分辨率图像时计算复杂度较高,而CNN在这方面更具优势。

相关推荐
Sui_Network5 分钟前
探索 Sui 上 BTCfi 的各类资产
大数据·人工智能·科技·游戏·区块链
静心问道10 分钟前
BitDistiller:通过自蒸馏释放 Sub-4-Bit 大语言模型的潜力
人工智能·语言模型·模型加速·ai技术应用
格林威15 分钟前
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现轮船检测识别(C#代码UI界面版)
人工智能·深度学习·数码相机·yolo·视觉检测
alex10024 分钟前
AI Agent开发学习系列 - langchain之LCEL(5):如何创建一个Agent?
人工智能·python·语言模型·langchain·prompt·向量数据库·ai agent
Gession-杰26 分钟前
OpenCV图像梯度、边缘检测、轮廓绘制、凸包检测大合集
人工智能·opencv·计算机视觉
JackieZeng52729 分钟前
Dynamic Model in RL
人工智能
计算机sci论文精选35 分钟前
CVPR 2024 3D传感框架实现无监督场景理解新纪元
人工智能·机器学习·计算机视觉·3d·cvpr·传感技术
小白iP代理38 分钟前
动态IP+AI反侦测:新一代爬虫如何绕过生物行为验证?
人工智能·爬虫·tcp/ip
钟屿44 分钟前
Multiscale Structure Guided Diffusion for Image Deblurring 论文阅读
论文阅读·图像处理·人工智能·深度学习·计算机视觉
聚客AI1 小时前
🚀深度解析Agentic RAG:如何突破模型的知识边界
人工智能·llm·掘金·日新计划