NLP高频面试题(三十三)——Vision Transformer(ViT)模型架构介绍

Transformer架构在自然语言处理领域取得了显著成功,激发了研究人员将其应用于计算机视觉任务的兴趣。Vision Transformer(ViT)应运而生,成为图像分类等视觉任务中的新兴架构。本文将介绍ViT的基本架构、工作原理,并与传统的卷积神经网络进行比较。

ViT的基本架构

ViT的核心思想是将图像视为一系列的补丁(patches),类似于自然语言处理中的词嵌入(word embeddings)。具体步骤如下:

  1. 图像分割为补丁:将输入图像划分为固定大小的补丁,例如16x16像素。这样,一个尺寸为224x224的图像将被分割为14x14=196个补丁。

  2. 补丁展平与嵌入:将每个补丁展平成一维向量,并通过线性变换映射到固定维度的嵌入空间。

  3. 位置编码:由于Transformer缺乏处理位置信息的内在机制,需要为每个补丁添加位置编码,以保留其在原始图像中的位置信息。

  4. Transformer编码器:将嵌入后的补丁序列输入标准的Transformer编码器,进行全局信息的建模和特征提取。

  5. 分类头:在补丁序列前添加一个可学习的分类标记([CLS]),其对应的输出经过全连接层用于最终的分类预测。

ViT的工作原理

ViT利用自注意力机制、计算图像中各补丁之间的关系。自注意力机制能够捕捉全局信息,使模型在处理长距离依赖关系时表现出色。多头自注意力进一步增强了模型的表达能力,使其能够关注输入序列的不同部分,从而学习到更丰富的特征表示。

ViT与卷积神经网络的比较

与传统的卷积神经网络相比,ViT具有以下特点:

  1. 全局信息捕捉:CNN通过局部感受野逐层堆叠来捕捉全局信息,而ViT通过自注意力机制直接建模全局依赖关系。

  2. 数据需求:ViT通常需要大量数据进行预训练,以达到与CNN相当的性能。这是因为ViT缺乏CNN中的局部平移不变性等先验知识,需要通过大量数据学习。

  3. 计算复杂度:ViT的自注意力机制在处理高分辨率图像时计算复杂度较高,而CNN在这方面更具优势。

相关推荐
机器之心几秒前
OpenAI推出全新ChatGPT Images,奥特曼亮出腹肌搞宣传
人工智能·openai
机器之心2 分钟前
SIGGRAPH Asia 2025:摩尔线程赢图形顶会3DGS挑战赛大奖,自研LiteGS全面开源
人工智能·openai
_Stellar5 分钟前
从输入到输出:大语言模型一次完整推理简单解析
人工智能·语言模型·自然语言处理
【建模先锋】5 分钟前
特征提取+概率神经网络 PNN 的轴承信号故障诊断模型
人工智能·深度学习·神经网络·信号处理·故障诊断·概率神经网络·特征提取
轲轲016 分钟前
Week02 深度学习基本原理
人工智能·深度学习
老蒋新思维7 分钟前
创客匠人:认知即资产 ——AI 时代创始人 IP 知识变现的底层逻辑
网络·人工智能·网络协议·tcp/ip·重构·创始人ip·创客匠人
开放知识图谱11 分钟前
论文浅尝 | 大语言模型在带超关系的知识图谱上的推理(ICLR2025)
人工智能·语言模型·自然语言处理·知识图谱
世岩清上12 分钟前
世岩清上:“人工智能+”可以赋能哪些行业场景?
人工智能·百度
sumAll13 分钟前
别再手动对齐矩形了!这个开源神器让 AI 帮你画架构图 (Next-AI-Draw-IO 体验)
前端·人工智能·next.js
Java后端的Ai之路17 分钟前
【智能体搭建平台篇】-Dify部署方案介绍
人工智能·chatgpt·aigc·ai编程