NLP高频面试题(三十三)——Vision Transformer(ViT)模型架构介绍

Transformer架构在自然语言处理领域取得了显著成功,激发了研究人员将其应用于计算机视觉任务的兴趣。Vision Transformer(ViT)应运而生,成为图像分类等视觉任务中的新兴架构。本文将介绍ViT的基本架构、工作原理,并与传统的卷积神经网络进行比较。

ViT的基本架构

ViT的核心思想是将图像视为一系列的补丁(patches),类似于自然语言处理中的词嵌入(word embeddings)。具体步骤如下:

  1. 图像分割为补丁:将输入图像划分为固定大小的补丁,例如16x16像素。这样,一个尺寸为224x224的图像将被分割为14x14=196个补丁。

  2. 补丁展平与嵌入:将每个补丁展平成一维向量,并通过线性变换映射到固定维度的嵌入空间。

  3. 位置编码:由于Transformer缺乏处理位置信息的内在机制,需要为每个补丁添加位置编码,以保留其在原始图像中的位置信息。

  4. Transformer编码器:将嵌入后的补丁序列输入标准的Transformer编码器,进行全局信息的建模和特征提取。

  5. 分类头:在补丁序列前添加一个可学习的分类标记([CLS]),其对应的输出经过全连接层用于最终的分类预测。

ViT的工作原理

ViT利用自注意力机制、计算图像中各补丁之间的关系。自注意力机制能够捕捉全局信息,使模型在处理长距离依赖关系时表现出色。多头自注意力进一步增强了模型的表达能力,使其能够关注输入序列的不同部分,从而学习到更丰富的特征表示。

ViT与卷积神经网络的比较

与传统的卷积神经网络相比,ViT具有以下特点:

  1. 全局信息捕捉:CNN通过局部感受野逐层堆叠来捕捉全局信息,而ViT通过自注意力机制直接建模全局依赖关系。

  2. 数据需求:ViT通常需要大量数据进行预训练,以达到与CNN相当的性能。这是因为ViT缺乏CNN中的局部平移不变性等先验知识,需要通过大量数据学习。

  3. 计算复杂度:ViT的自注意力机制在处理高分辨率图像时计算复杂度较高,而CNN在这方面更具优势。

相关推荐
新加坡内哥谈技术13 分钟前
Claude Code 的“AI优先”
人工智能
豆芽81917 分钟前
模糊控制Fuzzy Control
人工智能·算法·模糊控制
Sui_Network25 分钟前
Sui Stack Messaging SDK:为 Web3 打造可编程通信
大数据·人工智能·科技·web3·去中心化·区块链
金井PRATHAMA29 分钟前
GraphRAG对自然语言处理中深层语义分析的革命性影响与未来启示
人工智能·自然语言处理·知识图谱
人工智能培训30 分钟前
Transformer-位置编码(Position Embedding)
人工智能·深度学习·大模型·transformer·embedding·vision
丰年稻香40 分钟前
神经网络二分类任务详解:前向传播与反向传播的数学计算
人工智能·神经网络·分类
Lethehong1 小时前
DeepSeek-V3.1-Terminus:蓝耘API+CherryStudio实测国产最新开源模型,推理能力竟让我后背发凉
人工智能·大模型·deepseek·蓝耘元生代·蓝耘maas·ai ping
咖啡星人k1 小时前
AI 大模型驱动的开源知识库搭建系统 PandaWiki的网页挂件机器人教程
人工智能·机器人·开源
QYR_111 小时前
机器人定位器市场报告:2025-2031 年行业增长逻辑与投资机遇解析
大数据·人工智能
我是个菜鸡.1 小时前
视觉/深度学习/机器学习相关面经总结(3)(持续更新)
人工智能·深度学习·机器学习