纯个人整理,蓝桥杯使用的算法模板day2(0-1背包问题),手打个人理解注释,超全面,且均已验证成功(附带详细手写“模拟流程图”,全网首个

算法索引

01背包

优化前

java 复制代码
    /**
     * 0-1背包问题解法(与下方代码表格示例对应,已模拟验证)
     * @param W 背包的总容量(示例:8)
     * @param weights 物品的重量数组(示例:[2, 3, 4, 5])
     * @param values 物品的价值数组(示例:[3, 4, 5, 6])
     * @param n 物品的总数量(示例:4)
     * @return 能够装入背包的最大价值
     */

public int[][] dp(int W, int[] weights, int[] values, int n){
	// 创建动态规划表,dp[i][w]表示前i个物品在容量为w时的最大价值
	int[][] dp = new int[n][W + 1];
	for(int j = weights[0]; j <= W; j++){ //初始化背包,物品数量为1时,背包容量满足时,价格始终为第一个物品价值(3)
		dp[0][j] = values[0];
	}
	for(int i = 1; i < n; i++){ //从第二个物品开始遍历
		for(int j = 0; j <= W; j++){ //遍历每种背包容量
			if(j >= weights[i]){ //当前遍历的物品可以放入背包,因为j(总背包容量)>= wt[i](当前物品重量)
			//选择放入或不放入物品,取价值的最大值
				dp[i][j] = Math.max(
					dp[i - 1][j], //不放入物品,所以(总背包价值)不变
					dp[i - 1][j - weights[i]] + values[i] //放入物品,1(dp[i - 1][j - weights[i]]).总背包容量减去wt[i](即j - wt[i])(当前物品重量),此时为剩余背包容量,再看剩余背包容量的"背包总价值";(例如,剩余背包容量的"背包总价值"为0,则直接添加当前物品的价值val[i],即下方代码示例表格的i=1,j=3(dp[1][3])的情况,剩余背包容量的"背包总价值"为dp[0][0],即剩余背包容量的"背包总价值"为0)2(+ values[i]).增加第i个物品的价值val[i](数组中即i)
				);
			}else{ //不可以放入背包
				dp[i][j] = dp[i - 1][j]; //不放入,即保持"同一背包容量下,放入上一个物品时的背包总价值"不变(且第一个物品的数值均已手动初始化,实现数据调用闭环)
			}
		}
	}

	return dp[n - 1][W]; //返回最后一个汇总的
}

空间优化版(使用一维数组)

java 复制代码
    /**
     * 0-1背包问题解法(已验证)
     * @param W 背包的总容量(示例:8)
     * @param weights 物品的重量数组(示例:[2, 3, 4, 5])
     * @param values 物品的价值数组(示例:[3, 4, 5, 6])
     * @param n 物品的总数量(示例:4)
     * @return 能够装入背包的最大价值
     */
public static int knapsackOptimized(int W, int[] weights, int[] values, int n) {
        // 使用一维数组代替二维数组,优化空间复杂度
        int[] dp = new int[W + 1];
        
        // 初始化:容量为0时价值为0
        dp[0] = 0;
        
        // 动态规划过程
        for (int i = 0; i < n; i++) { // 遍历每个物品
            // 必须逆向遍历背包容量,防止重复计算
            for (int j = W; j >= weights[i]; j--) {
                // 更新dp[w]的值
                dp[j] = Math.max(
                    dp[j], // 不选当前物品
                    dp[j - weights[i]] + values[i] // 选择当前物品
                );
             }
        }
        
        return dp[W]; // 返回最终结果
    }

优化后的模拟流程图

为何优化后,j不能使用正序遍历

java 复制代码
    /**
     * 0-1背包问题解法(已验证)
     * @param W 背包的总容量(示例:8)
     * @param weights 物品的重量数组(示例:[2, 3, 4, 5])
     * @param values 物品的价值数组(示例:[3, 4, 5, 6])
     * @param n 物品的总数量(示例:4)
     * @return 能够装入背包的最大价值
     */
public static int knapsackOptimized(int W, int[] weights, int[] values, int n) {
        // 使用一维数组代替二维数组,优化空间复杂度
        int[] dp = new int[W + 1];
        
        // 初始化:容量为0时价值为0
        dp[0] = 0;
        
        // 动态规划过程
        for (int i = 0; i < n; i++) { // 遍历每个物品
            // 必须逆向遍历背包容量,防止重复计算
            for (int j = 0; j >= weights[i]; j++) {
                // 更新dp[w]的值
                dp[j] = Math.max(
                    dp[j], // 不选当前物品
                    dp[j - weights[i]] + values[i] // 选择当前物品
                );
             }
        }
        
        return dp[W]; // 返回最终结果
    }
模拟流程图

代码对应实现案例

设定 w e i g h t s = [ 2 , 3 , 4 , 5 ] weights=[2,3,4,5] weights=[2,3,4,5], v a l u e s = [ 3 , 4 , 5 , 6 ] values = [3,4,5,6] values=[3,4,5,6]

横轴: j j j(总背包容量);纵轴: i i i(第 i i i个物品); d p dp dp单元格:总背包价值

i\j 0 1 2 3 4 5 6 7 8
0 0 0 3 3 3 3 3 3 3
1 0 0 3 4 4 7 7 7 7
2 0 0 3 4 5 7 8 9 9
3 0 0 3 4 5 7 8 9 10
相关推荐
代码小将1 小时前
Leetcode209做题笔记
java·笔记·算法
Musennn2 小时前
leetcode 15.三数之和 思路分析
算法·leetcode·职场和发展
CM莫问5 小时前
<论文>(微软)避免推荐域外物品:基于LLM的受限生成式推荐
人工智能·算法·大模型·推荐算法·受限生成
康谋自动驾驶6 小时前
康谋分享 | 自动驾驶仿真进入“标准时代”:aiSim全面对接ASAM OpenX
人工智能·科技·算法·机器学习·自动驾驶·汽车
C++ 老炮儿的技术栈7 小时前
什么是函数重载?为什么 C 不支持函数重载,而 C++能支持函数重载?
c语言·开发语言·c++·qt·算法
yychen_java7 小时前
R-tree详解
java·算法·r-tree
MarkHard1238 小时前
Leetcode (力扣)做题记录 hot100(62,64,287,108)
算法·leetcode·职场和发展
一只鱼^_8 小时前
牛客练习赛138(首篇万字题解???)
数据结构·c++·算法·贪心算法·动态规划·广度优先·图搜索算法
一只码代码的章鱼8 小时前
Spring的 @Validate注解详细分析
前端·spring boot·算法
邹诗钰-电子信息工程8 小时前
嵌入式自学第二十一天(5.14)
java·开发语言·算法