聊聊Spring AI的RetrievalAugmentationAdvisor

本文主要研究一下Spring AI的RetrievalAugmentationAdvisor

BaseAdvisor

spring-ai-core/src/main/java/org/springframework/ai/chat/client/advisor/api/BaseAdvisor.java

复制代码
public interface BaseAdvisor extends CallAroundAdvisor, StreamAroundAdvisor {

	Scheduler DEFAULT_SCHEDULER = Schedulers.boundedElastic();

	@Override
	default AdvisedResponse aroundCall(AdvisedRequest advisedRequest, CallAroundAdvisorChain chain) {
		Assert.notNull(advisedRequest, "advisedRequest cannot be null");
		Assert.notNull(chain, "chain cannot be null");

		AdvisedRequest processedAdvisedRequest = before(advisedRequest);
		AdvisedResponse advisedResponse = chain.nextAroundCall(processedAdvisedRequest);
		return after(advisedResponse);
	}

	@Override
	default Flux<AdvisedResponse> aroundStream(AdvisedRequest advisedRequest, StreamAroundAdvisorChain chain) {
		Assert.notNull(advisedRequest, "advisedRequest cannot be null");
		Assert.notNull(chain, "chain cannot be null");
		Assert.notNull(getScheduler(), "scheduler cannot be null");

		Flux<AdvisedResponse> advisedResponses = Mono.just(advisedRequest)
			.publishOn(getScheduler())
			.map(this::before)
			.flatMapMany(chain::nextAroundStream);

		return advisedResponses.map(ar -> {
			if (AdvisedResponseStreamUtils.onFinishReason().test(ar)) {
				ar = after(ar);
			}
			return ar;
		}).onErrorResume(error -> Flux.error(new IllegalStateException("Stream processing failed", error)));
	}

	@Override
	default String getName() {
		return this.getClass().getSimpleName();
	}

	/**
	 * Logic to be executed before the rest of the advisor chain is called.
	 */
	AdvisedRequest before(AdvisedRequest request);

	/**
	 * Logic to be executed after the rest of the advisor chain is called.
	 */
	AdvisedResponse after(AdvisedResponse advisedResponse);

	/**
	 * Scheduler used for processing the advisor logic when streaming.
	 */
	default Scheduler getScheduler() {
		return DEFAULT_SCHEDULER;
	}

}

BaseAdvisor继承了CallAroundAdvisor、StreamAroundAdvisor,它提供了aroundCall、aroundStream的default,在执行chain的next之前执行before,之后执行after方法

RetrievalAugmentationAdvisor

spring-ai-core/src/main/java/org/springframework/ai/chat/client/advisor/RetrievalAugmentationAdvisor.java

复制代码
public final class RetrievalAugmentationAdvisor implements BaseAdvisor {

	public static final String DOCUMENT_CONTEXT = "rag_document_context";

	private final List<QueryTransformer> queryTransformers;

	@Nullable
	private final QueryExpander queryExpander;

	private final DocumentRetriever documentRetriever;

	private final DocumentJoiner documentJoiner;

	private final QueryAugmenter queryAugmenter;

	private final TaskExecutor taskExecutor;

	private final Scheduler scheduler;

	private final int order;

	public RetrievalAugmentationAdvisor(@Nullable List<QueryTransformer> queryTransformers,
			@Nullable QueryExpander queryExpander, DocumentRetriever documentRetriever,
			@Nullable DocumentJoiner documentJoiner, @Nullable QueryAugmenter queryAugmenter,
			@Nullable TaskExecutor taskExecutor, @Nullable Scheduler scheduler, @Nullable Integer order) {
		Assert.notNull(documentRetriever, "documentRetriever cannot be null");
		Assert.noNullElements(queryTransformers, "queryTransformers cannot contain null elements");
		this.queryTransformers = queryTransformers != null ? queryTransformers : List.of();
		this.queryExpander = queryExpander;
		this.documentRetriever = documentRetriever;
		this.documentJoiner = documentJoiner != null ? documentJoiner : new ConcatenationDocumentJoiner();
		this.queryAugmenter = queryAugmenter != null ? queryAugmenter : ContextualQueryAugmenter.builder().build();
		this.taskExecutor = taskExecutor != null ? taskExecutor : buildDefaultTaskExecutor();
		this.scheduler = scheduler != null ? scheduler : BaseAdvisor.DEFAULT_SCHEDULER;
		this.order = order != null ? order : 0;
	}

	public static Builder builder() {
		return new Builder();
	}

	@Override
	public AdvisedRequest before(AdvisedRequest request) {
		Map<String, Object> context = new HashMap<>(request.adviseContext());

		// 0. Create a query from the user text, parameters, and conversation history.
		Query originalQuery = Query.builder()
			.text(new PromptTemplate(request.userText(), request.userParams()).render())
			.history(request.messages())
			.context(context)
			.build();

		// 1. Transform original user query based on a chain of query transformers.
		Query transformedQuery = originalQuery;
		for (var queryTransformer : this.queryTransformers) {
			transformedQuery = queryTransformer.apply(transformedQuery);
		}

		// 2. Expand query into one or multiple queries.
		List<Query> expandedQueries = this.queryExpander != null ? this.queryExpander.expand(transformedQuery)
				: List.of(transformedQuery);

		// 3. Get similar documents for each query.
		Map<Query, List<List<Document>>> documentsForQuery = expandedQueries.stream()
			.map(query -> CompletableFuture.supplyAsync(() -> getDocumentsForQuery(query), this.taskExecutor))
			.toList()
			.stream()
			.map(CompletableFuture::join)
			.collect(Collectors.toMap(Map.Entry::getKey, entry -> List.of(entry.getValue())));

		// 4. Combine documents retrieved based on multiple queries and from multiple data
		// sources.
		List<Document> documents = this.documentJoiner.join(documentsForQuery);
		context.put(DOCUMENT_CONTEXT, documents);

		// 5. Augment user query with the document contextual data.
		Query augmentedQuery = this.queryAugmenter.augment(originalQuery, documents);

		// 6. Update advised request with augmented prompt.
		return AdvisedRequest.from(request).userText(augmentedQuery.text()).adviseContext(context).build();
	}

	/**
	 * Processes a single query by routing it to document retrievers and collecting
	 * documents.
	 */
	private Map.Entry<Query, List<Document>> getDocumentsForQuery(Query query) {
		List<Document> documents = this.documentRetriever.retrieve(query);
		return Map.entry(query, documents);
	}

	@Override
	public AdvisedResponse after(AdvisedResponse advisedResponse) {
		ChatResponse.Builder chatResponseBuilder;
		if (advisedResponse.response() == null) {
			chatResponseBuilder = ChatResponse.builder();
		}
		else {
			chatResponseBuilder = ChatResponse.builder().from(advisedResponse.response());
		}
		chatResponseBuilder.metadata(DOCUMENT_CONTEXT, advisedResponse.adviseContext().get(DOCUMENT_CONTEXT));
		return new AdvisedResponse(chatResponseBuilder.build(), advisedResponse.adviseContext());
	}

	@Override
	public Scheduler getScheduler() {
		return this.scheduler;
	}

	@Override
	public int getOrder() {
		return this.order;
	}

	private static TaskExecutor buildDefaultTaskExecutor() {
		ThreadPoolTaskExecutor taskExecutor = new ThreadPoolTaskExecutor();
		taskExecutor.setThreadNamePrefix("ai-advisor-");
		taskExecutor.setCorePoolSize(4);
		taskExecutor.setMaxPoolSize(16);
		taskExecutor.setTaskDecorator(new ContextPropagatingTaskDecorator());
		taskExecutor.initialize();
		return taskExecutor;
	}

	//......

}	

RetrievalAugmentationAdvisor实现了BaseAdvisor接口,其before方法先通过queryTransformers来转换原始query,之后使用queryExpander来扩展query,接着通过documentRetriever来对扩展query检索相关文档,然后通过documentJoiner.join来把检索结果结合起来,作为rag_document_context放到context中,最后通过queryAugmenter.augment(originalQuery, documents)来生成最后的augmentedQuery;其after方法将before存储下来的key为rag_document_context的检索到的文档作为metadata附加到response中。

示例

复制代码
	@Test
	void ragWithRewrite() {
		String question = "Where are the main characters going?";

		RetrievalAugmentationAdvisor ragAdvisor = RetrievalAugmentationAdvisor.builder()
			.queryTransformers(RewriteQueryTransformer.builder()
				.chatClientBuilder(ChatClient.builder(this.openAiChatModel))
				.targetSearchSystem("vector store")
				.build())
			.documentRetriever(VectorStoreDocumentRetriever.builder().vectorStore(this.pgVectorStore).build())
			.build();

		ChatResponse chatResponse = ChatClient.builder(this.openAiChatModel)
			.build()
			.prompt()
			.user(question)
			.advisors(ragAdvisor)
			.call()
			.chatResponse();

		assertThat(chatResponse).isNotNull();

		String response = chatResponse.getResult().getOutput().getText();
		System.out.println(response);
		assertThat(response).containsIgnoringCase("Loch of the Stars");

		evaluateRelevancy(question, chatResponse);
	}

这里使用了RewriteQueryTransformer、VectorStoreDocumentRetriever

小结

Spring AI定义了BaseAdvisor,它继承了CallAroundAdvisor、StreamAroundAdvisor,它提供了aroundCall、aroundStream的default,在执行chain的next之前执行before,之后执行after方法。RetrievalAugmentationAdvisor实现了BaseAdvisor接口,其before方法先通过queryTransformers来转换原始query,之后使用queryExpander来扩展query,接着通过documentRetriever来对扩展query检索相关文档,然后通过documentJoiner.join来把检索结果结合起来,作为rag_document_context放到context中,最后通过queryAugmenter.augment(originalQuery, documents)来生成最后的augmentedQuery;其after方法将before存储下来的key为rag_document_context的检索到的文档作为metadata附加到response中。

doc

相关推荐
Chef_Chen9 分钟前
从0开始学习语言模型--Day02-如何最大化利用硬件
人工智能·学习·语言模型
KENYCHEN奉孝10 分钟前
PyTorch 实现 MNIST 手写数字识别
人工智能·pytorch·深度学习
vlln10 分钟前
【论文解读】AgentThink:让VLM在自动驾驶中学会思考与使用工具
人工智能·机器学习·自动驾驶
数据堂官方账号13 分钟前
七大技术路线解析:自动驾驶如何被数据重新定义
人工智能·机器学习·自动驾驶
HalukiSan15 分钟前
Happy-LLM 第二章 Transformer
人工智能
硬核隔壁老王16 分钟前
AI Agent从概念到实战全面解析(六):主流AI Agent开发框架与实践指南
人工智能·程序员·llm
数据智能老司机18 分钟前
AI产品开发的艺术——发现与优先排序AI机会
人工智能·产品经理·产品
青椒大仙KI1121 分钟前
论文笔记 <交通灯> <多智能体>DERLight双重经验回放灯机制
论文阅读·人工智能·深度学习
知其然亦知其所以然21 分钟前
Spring AI 入门实战:我用七个关键词,彻底搞懂了它的核心概念!
java·后端·spring
安思派Anspire23 分钟前
编程 vs 氛围编程 —— 氛围编程刚刚取代了你的工作
人工智能