RNN模型与NLP应用——(8/9)Attention(注意力机制)

声明:

本文基于哔站博主【Shusenwang】的视频课程【RNN模型及NLP应用】,结合自身的理解所作,旨在帮助大家了解学习NLP自然语言处理基础知识。配合着视频课程学习效果更佳。

材料来源:【Shusenwang】的视频课程【RNN模型及NLP应用】

视频链接:RNN模型与NLP应用(8/9):Attention (注意力机制)_哔哩哔哩_bilibili


一、学习目标

1.掌握Attention注意力机制的基本逻辑

2.清楚Attention注意力机制的实际意义


二、注意力机制

(1)首先我们来回顾一下上节课我们学到的Sequence to Sequence模型:

Sequence to Sequence模型有一个编码器Encoder和一个解码器Decoder。

Encoder将原来的英语文本逐字记录,在最后一个状态向量h和传输带C中记录下整个英语子的信息。而最后一个状态向量h和传输带C,将会作为解码器Decoderde初始化状态向量,使得Decoder获取原英文文本的所有信息,然后Decoder就像是一个文本生成i器一样逐字生成的与文本。详细过程如图:

但是:Sequence to Sequence 模型有一个明显的缺陷,要是输入的句子很长,那么Encoder模型就有可能无法将输入的句子全部记忆下来,从而使得Encoder最后一个状态向量漏掉句子中的某些信息,那么Decoder就不能产生争取的翻译。

如果你拿Sequence to Sequence 模型来做机器翻译,那么你就会得到这样的一个图片:

横轴是输入信息长度

纵轴是BLUE score,BLUE score是评价机器翻译好坏的标准。BLUE越高说明机器翻译越准确。

如果**【不用Attention】那么你得到的就是图中++蓝色的线++**,随着翻译句子的长度增加,翻译准确度先升高再降低。

如果**【用Attention】那么你就会得到图中++红色曲线++**,翻译准确度会一直保持很高

(2)用Attention改进Seq2Seq模型

1.前提须知:

①用了Attention,Decoder每次更新状态的时候会再看一遍Encoder的所有状态,这样就不会遗忘。

②Attention还会告诉Decoder应该关注Encoder哪些状态

③Attention可以大幅提升准确率,但是计算量却很大

2.Attention+Seq2Seq

Weight: 𝛼i = align( 𝐡i , 𝐬0 ):

该公式计算Encoder第i个状态和Decoder当前状态的相关性,把结果记为𝛼i(即权重weight),Encoder有m个状态,是一共算出m个𝛼。𝛼i都是介于0到1之间的实数,所有𝛼之和为1。

3.如何计算Attention?:

【方法一】:

这里的v和W都是参数矩阵,需要从训练数据中获得。

【方法二】:这种方法更常用

【next】将对应的h与α相乘求加权平均,最终获得C0,我门吧C0称作Contect vector。

每一个C都会对应一个S。C0对应S0

更新状态S和C

这是S1的更新公式:

计算过程中需要前一个S0和前一个C0。

这是C1的更新公式:

计算过程中的αi与之前的αi不一样。

这里的αi是由所有h和Decoder当前状态S1相乘做加权平均得来的。

以此类推:

C2计算过程:

C3计算过程:

【特别注意】每一次计算过程中的αi与前一步计算的αi都不一样。

【思考】:在这个计算过程中有多少个αi?

假设Encoder计算了m个步骤,Decoder计算了t个步骤。那么全部权重α数量为mt。这个时间复杂度非常高。虽然Attention避免遗忘,大幅提高准确率,但是代价是巨大的计算。

4.Attention的实际意义

图中

上面一行代表Decoder的每一个状态向量,下面一行代表着Encoder的每一个状态向量

每条线代表着他们的对应相关性即权重α。线越粗代表权重关系很大,线越细代表权重关系很小。

以上图标黄的两个状态为例:法语zone和英语Area之间的线很粗,则说明二者之间相关性很大。这条线有很直观地解释------法语zone就是英语Area,所以这两个状态的相似度很高。

每当Decoder想要生成一个状态的时候都会看一遍Encoder的所有状态,这些权重α会告诉Deocder应该关注哪些地方。

三、总结

1.标准的Seq2Seq模型是根据当前状态来产生下一个状态

2.如果使用Attention,Decoder在产生下一个状态的时候会先看一遍Ecoder里所有的向量。

3.Attention会告诉Decoder应该重点关注Encoder的哪些状态

4.Attention可以大幅提升Seq2Seq模型的表现,但是要耗费大量的计算

相关推荐
跨境猫小妹1 分钟前
跨境电商深水区:价值增长新范式,重构出海增长逻辑
大数据·人工智能·重构·产品运营·跨境电商·防关联
imbackneverdie1 分钟前
AI工具如何重塑综述写作新体验
数据库·人工智能·考研·自然语言处理·aigc·论文·ai写作
zhaodiandiandian3 分钟前
大模型驱动AI产业化浪潮,全链条突破重塑经济生态
人工智能
这儿有一堆花5 分钟前
将 AI 深度集成到开发环境:Gemini CLI 实用指南
人工智能·ai·ai编程
zhaodiandiandian6 分钟前
从多模态到AI Agent,技术突破引领智能时代新变革
人工智能
l3538o6757310 分钟前
国产POE降压恒压芯片方案选型:48v-52v输入转5v-12v/1-3A电源芯片
人工智能·科技·单片机·嵌入式硬件·电脑·智能家居
迪菲赫尔曼17 分钟前
YAML2ModelGraph【v1.0】:一键生成 Ultralytics 模型结构图
人工智能·yolo·目标检测·yolov5·yolov8·yolo11·结构图
道199319 分钟前
树莓派vsRK3588 对比及无人车集成方案(RTK / 激光雷达 / 云卓 H16)
人工智能
会挠头但不秃20 分钟前
深度学习(5)循环神经网络
人工智能·rnn·深度学习
乐迪信息20 分钟前
乐迪信息:AI摄像机识别煤矿出入井车辆数量异常检测
大数据·运维·人工智能·物联网·安全