Dify25. Dify 工作流分享 - Deep Researcher

OpenAI 在 2 月底的时候推出了一款新的 Agent 功能------Deep Research。它可以实现在接收到用户输入之后,查找、分析和综合数百个在线资源,以分析师的身份创建一个相关的综合报告。

而为它提供推理能力的模型是 OpenAI o3,这款模型针对网页浏览和数据分析进行了优化,可以根据搜索得到的内容、图像以及 PDF 进行推理和分析,并根据遇到的信息做出必要的调整。

从功能上看,Deep Research 和 Deepseek R1 模型的能力有一些重合,毕竟 Deep Research 是 OpenAI 针对 R1 模型做出的回应,它在类似金融、科学和法律等领域上能输出更加详细、有据可查且引证清晰的报告。

但是这个功能 OpenAI 目前不是免费供大家使用的,Plus、Team、Enterprise 和 Edu 用户每月只有 10 次使用机会,Pro 用户每月也只有 120 次使用机会。

这让我不得不会想起 o1 模型刚出来那会儿,也差不多一样的场景,所幸后来找到了 dify-o1 的工作流。所以 Deep Research 是不是也可以通过工作流的方式来进行复刻呢?

答案是肯定的,在 Github 上已经有大佬实现了 Deep Researcher On Dify 的工作流,接下来让我们一起来看下吧~

Github 地址:github.com/AdamPlatin1...

这次我们主要分析分析人家这个工作流的思路(毕竟节点真的有点多)。

  1. 首先是开始节点,这里看似只需要输入用户的问题,但其实还夹杂了一个关键变量 dialogue_count,这个变量是用户在与 Chatflow 类型应用交互时的对话轮数。每轮对话后自动计数增加 1,可以和 if-else 节点搭配出丰富的分支逻辑。比如在该工作流中,在 dialogue_count 是 0 也就是第一次对话时,会拿到两个变量:应用开场白所选的语言和用户输入的研究主题;
  2. 紧接着根据用户的问题,LLM 会将其进行分解,然后输出分解后的内容赋值给四个问题变量;
  3. 这四个变量最终又被使用到了多轮对话中,通过四个问题来收集更多的信息;
  4. 收集完用户输入的信息以后,接下来通过 LLM 进行主题提取和多次回答优化;
  5. 以提取出的主题和多次回答的内容为基础,再次进行深入研究细化;
  6. 结合已有知识库(没有也行)和维基百科搜索,输出相关内容;
  7. 最后通过 LLM 进行 SUB 主题的整理分析并将其合并到一起进行最终的输出。

我们来测试一下,比如输入:未来几年黄金价格的趋势是怎样的?

看效果是不错的,中间用到的工具有:

  • AI 模式是 Google 的 Gemini
  • DeepSeek R1 7B
  • 维基百科搜索

感兴趣的朋友可以试试看,需要工作流文件的可以在后台回复「DSL」。

相关推荐
过期动态43 分钟前
【动手学深度学习】卷积神经网络(CNN)入门
人工智能·python·深度学习·pycharm·cnn·numpy
蔗理苦4 小时前
2025-04-05 吴恩达机器学习5——逻辑回归(2):过拟合与正则化
人工智能·python·机器学习·逻辑回归
程序猿阿伟5 小时前
《SQL赋能人工智能:解锁特征工程的隐秘力量》
数据库·人工智能·sql
csssnxy5 小时前
叁仟数智指路机器人是否支持远程监控和管理?
大数据·人工智能
车斗6 小时前
win10 笔记本电脑安装 pytorch+cuda+gpu 大模型开发环境过程记录
人工智能·pytorch·电脑
KY_chenzhao6 小时前
数据驱动防灾:AI 大模型在地质灾害应急决策中的关键作用。基于DeepSeek/ChatGPT的AI智能体开发
人工智能·chatgpt·智能体·deepseek·本地化部署
大多_C6 小时前
量化方法分类
人工智能·分类·数据挖掘
www_pp_6 小时前
# 基于 OpenCV 的人脸识别实战:从基础到进阶
人工智能·opencv·计算机视觉
三月七(爱看动漫的程序员)7 小时前
LLM面试题六
数据库·人工智能·gpt·语言模型·自然语言处理·llama·milvus
程序员X小鹿7 小时前
免费,无限使用!国产AI又出王炸,Manus瞬间不香了!一款能自主操作的AI智能体(附使用教程)
aigc