兄弟们,炸裂了!llama 4发布了!又有哪些创业公司被颠覆了?

Llama 4系列模型代表了人工智能领域的重大进展,特别是在多模态处理和性能效率方面。以下是对Llama 4 Scout、Llama 4 Maverick以及Llama 4 Behemoth的简要介绍和解释。

1. Llama 4 Scout

  • 模型特点:Llama 4 Scout拥有17亿活跃参数,16个专家,总参数量为109亿。它是其类别中最好的多模态模型之一,支持最长10M的上下文长度,远超前代模型。
  • 优势:在多文档摘要、用户活动分析和代码理解等任务中表现出色。它使用了交错注意力层(iRoPE)来增强长距离依赖处理能力。
  • 应用场景:适合需要长上下文理解的任务,如文本分析和代码理解。

2. Llama 4 Maverick

  • 模型特点:同样拥有17亿活跃参数,但有128个专家,总参数量为400亿。它在多模态任务中优于GPT-4o和Gemini 2.0 Flash,并在编码和推理方面与更大模型DeepSeek v3.1相媲美。
  • 优势:在图像和文本理解、创作写作等方面表现突出。它使用混合专家(MoE)架构,提高了推理和编码能力。
  • 应用场景:适合需要高性能图像和文本理解的任务,如聊天机器人和智能助手。

3. Llama 4 Behemoth

  • 模型特点:拥有288亿活跃参数,16个专家,总参数量近两万亿。它是Llama 4系列中最强大的模型,用于为其他模型提供知识蒸馏。
  • 优势:在数学、多语言和图像基准测试中表现出色,超过了GPT-4.5和Gemini 2.0 Pro。
  • 应用场景:作为教师模型,帮助训练和提高其他Llama 4模型的性能。

代码示例

以下是一个简单的Python示例,展示如何使用Hugging Face加载和使用Llama 4模型:

python 复制代码
from transformers import AutoModelForCausalLM, AutoTokenizer

# 加载模型和tokenizer
model_name = "decapoda-research/llama-4-maverick"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# 输入文本
input_text = "Hello, how are you?"

# 编码输入
inputs = tokenizer(input_text, return_tensors="pt")

# 生成输出
outputs = model.generate(**inputs)

# 解码输出
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)

print(output_text)

开发与应用

Llama 4系列模型通过混合专家(MoE)架构和早期融合技术,实现了高效的多模态处理。这些模型在图像和文本理解、长距离依赖处理等方面具有广泛的应用前景。开发者可以通过Hugging Face和Meta的平台下载并使用这些模型,进一步推动AI技术在各个领域的创新应用。

相关推荐
专注API从业者3 分钟前
基于 Flink 的淘宝实时数据管道设计:商品详情流式处理与异构存储
大数据·前端·数据库·数据挖掘·flink
龙在天4 分钟前
H5开发,开发照相机,以及组件封装
前端
曼妥思10 分钟前
PosterKit:跨框架海报生成工具
前端·开源
楚韵天工18 分钟前
基于GIS的无人机模拟飞行控制系统设计与实现
深度学习·算法·深度优先·无人机·广度优先·迭代加深·图搜索算法
binqian30 分钟前
【异步】js中异步的实现方式 async await /Promise / Generator
开发语言·前端·javascript
Jerry说前后端39 分钟前
Android 移动端 UI 设计:前端常用设计原则总结
android·前端·ui
熊猫钓鱼1 小时前
基于Trae CN与TrendsHub快速实现的热点百事通
前端·trae
LIUENG1 小时前
Vue3 响应式原理
前端·vue.js
讨厌吃蛋黄酥1 小时前
前端居中九种方式血泪史:面试官最爱问的送命题,我一次性整明白!
前端·css
龙在天1 小时前
🤩 用Babel自动埋点,原来这么简单!
前端