NLP/大模型八股专栏结构解析

1.transformer 结构相关

(1)transformer的基本结构有哪些,分别的作用是什么,代码实现。
NLP高频面试题(一)------Transformer的基本结构、作用和代码实现

(2)LSTM、GRU和Transformer结构的区别与联系,优缺点分别是什么?
NLP高频面试题(二)------LSTM、GRU和Transformer结构的区别与联系,优缺点分别是什么?
NLP高频面试题(三)------普通RNN的梯度消失和梯度爆炸问题

(3)为什么要多头注意力机制?

(4)为什么要有QKV三个不同的向量,目前对这块有哪些优化?

(5)self-attention和cross-attention的区别与联系

(6)BN和LN的区别与联系,为什么attention要用LN

NLP高频面试题(四)------BN和LN的区别与联系,为什么attention要用LN

NLP高频面试题(三十四)------深度解析Layer Normalization与Batch Normalization:区别、联系及Transformer为何偏爱LN

2. bert及其变体相关

(1)BERT的基本结构介绍、预训练任务、下游任务
NLP高频面试题(五)------BERT的基本结构介绍、预训练任务、下游任务

(2)BERT和传统的文本表示模型的区别与联系

(3)Bert和transformer论文中有哪些不一样的地方

(4)GPT的基本结构介绍

(5)decoder-only、encoder-only和encoder-decoder的区别与联系
NLP高频面试题(六)------decoder-only、encoder-only和encoder-decoder的区别与联系

(6)GPT和Bert的mask有什么区别?
NLP高频面试题(七)------GPT和Bert的mask有什么区别?

(7)GPT1,2,3分别有哪些改进

NLP高频面试题(八)------GPT三个版本的区别

(8)

3. NLP任务相关

4. 大模型相关

(1)目前常见的几种大模型架构是啥样的
NLP高频面试题(十)------目前常见的几种大模型架构是啥样的

(2)RLHF的流程有哪些
NLP高频面试题(十一)------RLHF的流程有哪些

(3)Lora微调的原理、什么是Qlora
NLP高频面试题(十二)------Lora微调的原理、什么是Qlora

(4)什么是大模型幻觉,如何解决大模型幻觉
NLP高频面试题(十三)------什么是大模型幻觉,如何解决大模型幻觉

(5)DPO、PPO等强化学习训练方法介绍
NLP高频面试题(十四)------DPO、PPO等强化学习训练方法介绍

(6)大模型解码常见参数解析
NLP高频面试题(九)------大模型常见的几种解码方案

NLP高频面试题(二十九)------大模型解码常见参数解析

(7)RAG相关内容简介
NLP高频面试题(二十四)------RAG相关内容简介

(8)RAG的reranker模块结果,原理和目前存在的挑战
NLP高频面试题(二十五)------RAG的reranker模块结果,原理和目前存在的挑战

(9)RAG的retriever模块作用,原理和目前存在的挑战
NLP高频面试题(二十六)------RAG的retriever模块作用,原理和目前存在的挑战

(10)SFT有哪几种参数微调方法?有什么优缺点?
NLP高频面试题(二十七)------SFT有哪几种参数微调方法?有什么优缺点?

(11)Reward model是如何训练的,怎么训练一个比较好的Reward model
NLP高频面试题(二十八)------Reward model是如何训练的,怎么训练一个比较好的Reward model

(12)LLama系列模型介绍,包括LLama LLama2和LLama3
NLP高频面试题(三十)------LLama系列模型介绍,包括LLama LLama2和LLama3
NLP高频面试题(三十五)------LLaMA / ChatGLM / BLOOM的区别

(13)多模态预训练模型的主要结构、特征对齐与融合方法及对比损失函数详解
NLP高频面试题(三十一)------多模态预训练模型的主要结构、特征对齐与融合方法及对比损失函数详解

(14)介绍一下CLIP和CLIP2
NLP高频面试题(三十二)------介绍一下CLIP和CLIP2

(15)Vision Transformer(ViT)模型架构介绍
NLP高频面试题(三十三)------Vision Transformer(ViT)模型架构介绍

(16)深入理解思维链(Chain-of-Thought)提示方法
NLP高频面试题(三十六)------深入理解思维链(Chain-of-Thought)提示方法

5. AI Infra相关

(1)有哪几种分布式训练方式
NLP高频面试题(十五)------有哪几种分布式训练方式

(2)deepspeed原理
NLP高频面试题(十六)------deepspeed原理

(3)什么是KV Cache
NLP高频面试题(十七)------什么是KV Cache

(4)什么是prefill和decoder分离架构
NLP高频面试题(十八)------什么是prefill和decoder分离架构

(5)VLLM推理加速原理
NLP高频面试题(十九)------VLLM推理加速原理

(6)flash attention原理
NLP高频面试题(二十)------flash attention原理

6. DeepSeek相关

(1)deepseek V1-V3 分别有哪些改进,这些改进是如何对模型产生影响的
NLP高频面试题(二十一)------deepseek V1-V3 分别有哪些改进,这些改进是如何对模型产生影响的

(2)deepseek论文中的的GRPO训练原理、和PPO相比有哪些改变,这些改进有什么作用
NLP高频面试题(二十二)------deepseek论文中的的GRPO训练原理、和PPO相比有哪些改变,这些改进有什么作用

7. 其他

(1)对抗训练的发展脉络,原理,演化路径
NLP高频面试题(二十三)对抗训练的发展脉络,原理,演化路径

相关推荐
张较瘦_31 分钟前
[论文阅读] AI+软件工程(迁移)| 从JDK8到21:FreshBrew如何为AI代码迁移画上“可信句号”
论文阅读·人工智能·软件工程
Mintopia37 分钟前
小样本学习在 WebAI 场景中的技术应用与局限
前端·人工智能·aigc
yueyuebaobaoxinx1 小时前
2025 AI 落地元年:从技术突破到行业重构的实践图景
人工智能·重构
说私域1 小时前
私域整体结构的顶层设计:基于“开源AI智能名片链动2+1模式S2B2C商城小程序”的体系重构
人工智能·小程序·开源
yunyun18863581 小时前
AI - 自然语言处理(NLP) - part 1
人工智能·自然语言处理
星期天要睡觉2 小时前
计算机视觉(opencv)——疲劳检测
人工智能·opencv·计算机视觉
zxsz_com_cn2 小时前
基于AI的设备健康诊断:工业设备智能运维的破局之钥
运维·人工智能
MoRanzhi12032 小时前
12. Pandas 数据合并与拼接(concat 与 merge)
数据库·人工智能·python·数学建模·矩阵·数据分析·pandas
杜子不疼.2 小时前
【Linux】进程的初步探险:基本概念与基本操作
linux·人工智能·ai
可触的未来,发芽的智生3 小时前
触摸未来2025.10.04:当神经网络拥有了内在记忆……
人工智能·python·神经网络·算法·架构