MOS管、电源、晶振三者的核心关系总结

MOS管、电源、晶振三者的核心关系总结

1. 核心定位

  • MOS管:数字电路的最小执行单元,所有逻辑操作(导通/截止)最终由其完成。
  • 电源(VDD/GND):为MOS管提供电流路径和电压基准,决定载流子流动方向(电子或空穴)。
  • 晶振(时钟):通过方波信号间接控制MOS管栅极的充放电,同步其开关时机。

2. 三者协同机制

  1. 电源连接
    • 源极(S)与漏极(D):
      • NMOS:源极接GND(低电位),漏极接负载/VDD(高电位),电流方向 D→S(电子S→D)。
      • PMOS:源极接VDD(高电位),漏极接负载/GND(低电位),电流方向 S→D(空穴D→S)。
    • 作用:电源极性直接决定MOS管中载流子的流动方向,形成电流路径。
  2. 晶振信号输入
    • 栅极(G):晶振的方波信号最终传输到栅极,通过 上升沿/下降沿 控制:
      • 上升沿:高电平(如3.3V)MOS管导通。
      • 下降沿:低电平(0V)MOS管截止。
    • 作用:同步所有MOS管的开关动作,确保全局时序一致。
  3. MOS管的最终执行
    • 导通时:形成沟道,电流按电源极性方向流动(如NMOS:VDD→负载→D→S→GND)。
    • 截止时:沟道消失,电流路径断开。

3. 逻辑与物理的分离

  • 高低电平(逻辑0/1):由更复杂的电路(如触发器、锁存器)通过MOS管的组合实现存储和传递,但基础动作始终依赖MOS管的导通/截止。
  • MOS管的核心角色:
    • 仅作为"开关",不直接表示逻辑0/1,但所有逻辑功能的物理实现均由其完成。

4. 总结陈述

"数字电路的基础是MOS管、电源、晶振三者的协同:

  1. 电源连接源极和漏极,强制载流子按极性方向流动;
  2. 晶振通过方波边沿控制栅极电压,同步MOS管的开关动作;
  3. MOS管作为最小执行单元,通过导通/截止实现电流路径的通断,进而由组合电路(如触发器)完成逻辑0/1的存储与传递。"
  4. 晶振的方波信号最终都会到达mos管的栅极,没有例外,这是数字电路同步逻辑的物理基础
相关推荐
码云数智-园园26 分钟前
“架构之争,生态之合”:.NET 生态系统对 LoongArch 与 RISC-V 的支持深度解析
架构·.net·risc-v
啊森要自信10 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2的n次方_11 小时前
CANN ascend-transformer-boost 架构解析:融合注意力算子管线、长序列分块策略与图引擎协同机制
深度学习·架构·transformer
Fushize12 小时前
多模块架构下的依赖治理:如何避免 Gradle 依赖地狱
android·架构·kotlin
大雨淅淅12 小时前
Eureka从入门到精通:开启微服务架构的钥匙
微服务·云原生·eureka·架构
狗哥哥14 小时前
微前端路由设计方案 & 子应用管理保活
前端·架构
Max_uuc14 小时前
【架构心法】对抗熵增:嵌入式系统中的“数据完整性”保卫战
架构
Tadas-Gao17 小时前
缸中之脑:大模型架构的智能幻象与演进困局
人工智能·深度学习·机器学习·架构·大模型·llm
晚霞的不甘18 小时前
Flutter for OpenHarmony 可视化教学:A* 寻路算法的交互式演示
人工智能·算法·flutter·架构·开源·音视频
代码改善世界19 小时前
CANN深度解构:中国AI系统软件的原创性突破与架构创新
大数据·人工智能·架构