大模型(二)神经网络

文章目录

什么是模型

模型是一个由输入和输出构成的系统。只要有模型,就一定有输入和输出。

分类:

  • 明确数学公式: 这类公式是明确的,当输入数据时,会进行明确的数据计算
  • 需学习与训练: 这类公式不那么明确,需要通过学习和训练来明确,如神经网络和机器学习

融合两类公式: 真实的模型往往是融合了明确数学公式和需学习的公式。

步骤:

  • 设计一个符合场景的公式
  • 模型的参数

设计模型的主要工作:设计数学公式

模型就是一个数学公式,设计模型就是设计能解决真实问题的数学公式

万金油公式-神经网络

复杂真实问题难以通过人类设计公式解决,神经网络作为万金油公式应运而生:神经网络:模拟人脑,设计一种一劳永逸的公式结构,通过大量参数(如几千亿个)进行复杂计算

这样在模型中只需要做第二个步骤

通过案例理解神经网络-基于MNIST数据库的图像识别

MNIST数据库介绍

此模型接受图片作为输入,输出结果为概率

MNIST数据库中有7万张手写的数字图片,从0-9,其中6万张用于训练,1万张用于测试。

每张图片只包含一个手写数字(0-9),为28×28像素的灰度图片(黑白图片)

实现步骤

  • 将图片的每一个像素转为用0-255展示的数字,输出为一个28*28=784维向量
  • 边缘提取:用前一个数字减去后一个数字,把非0数字转化为1,其中1为边缘,0为中间或者没有
  • 采用中间公式进行计算
  • 输出十个概率,对应这个图片中数字是0-9的概率

神经网络与机器学习

神经网络的作用: 有了神经网络,设计公式结构变得轻松,因为神经网络可以替代人类设计复杂的数学公式,部分公式由人类设计,部分由神经网络完成,两者融合。

模拟机器学习的过程

  • 给出一个公式
  • 确定参数分别是多少
    • 随机初始化一组参数
    • 在训练数据集中,利用公式进行分类
    • 计算分类结果的误差
    • 计算参数的值应该如何计算才能减小误差:假设其他参数都不变 只变化一个参数 得到一个平面上的曲线 神经网络和机器学习
    • 计算出一组新的参数值
    • 回到第二步
相关推荐
zm-v-1593043398610 分钟前
ArcGIS 水文分析升级:基于深度学习的流域洪水演进过程模拟
人工智能·深度学习·arcgis
拓端研究室1 小时前
视频讲解|核密度估计朴素贝叶斯:业务数据分类—从理论到实践
人工智能·分类·数据挖掘
灵智工坊LingzhiAI1 小时前
人体坐姿检测系统项目教程(YOLO11+PyTorch+可视化)
人工智能·pytorch·python
昨日之日20061 小时前
Video Background Remover V3版 - AI视频一键抠像/视频换背景 支持50系显卡 一键整合包下载
人工智能·音视频
SHIPKING3932 小时前
【机器学习&深度学习】什么是下游任务模型?
人工智能·深度学习·机器学习
子燕若水6 小时前
Unreal Engine 5中的AI知识
人工智能
极限实验室7 小时前
Coco AI 实战(一):Coco Server Linux 平台部署
人工智能
杨过过儿7 小时前
【学习笔记】4.1 什么是 LLM
人工智能
巴伦是只猫7 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
伍哥的传说8 小时前
React 各颜色转换方法、颜色值换算工具HEX、RGB/RGBA、HSL/HSLA、HSV、CMYK
深度学习·神经网络·react.js