大模型(二)神经网络

文章目录

什么是模型

模型是一个由输入和输出构成的系统。只要有模型,就一定有输入和输出。

分类:

  • 明确数学公式: 这类公式是明确的,当输入数据时,会进行明确的数据计算
  • 需学习与训练: 这类公式不那么明确,需要通过学习和训练来明确,如神经网络和机器学习

融合两类公式: 真实的模型往往是融合了明确数学公式和需学习的公式。

步骤:

  • 设计一个符合场景的公式
  • 模型的参数

设计模型的主要工作:设计数学公式

模型就是一个数学公式,设计模型就是设计能解决真实问题的数学公式

万金油公式-神经网络

复杂真实问题难以通过人类设计公式解决,神经网络作为万金油公式应运而生:神经网络:模拟人脑,设计一种一劳永逸的公式结构,通过大量参数(如几千亿个)进行复杂计算

这样在模型中只需要做第二个步骤

通过案例理解神经网络-基于MNIST数据库的图像识别

MNIST数据库介绍

此模型接受图片作为输入,输出结果为概率

MNIST数据库中有7万张手写的数字图片,从0-9,其中6万张用于训练,1万张用于测试。

每张图片只包含一个手写数字(0-9),为28×28像素的灰度图片(黑白图片)

实现步骤

  • 将图片的每一个像素转为用0-255展示的数字,输出为一个28*28=784维向量
  • 边缘提取:用前一个数字减去后一个数字,把非0数字转化为1,其中1为边缘,0为中间或者没有
  • 采用中间公式进行计算
  • 输出十个概率,对应这个图片中数字是0-9的概率

神经网络与机器学习

神经网络的作用: 有了神经网络,设计公式结构变得轻松,因为神经网络可以替代人类设计复杂的数学公式,部分公式由人类设计,部分由神经网络完成,两者融合。

模拟机器学习的过程

  • 给出一个公式
  • 确定参数分别是多少
    • 随机初始化一组参数
    • 在训练数据集中,利用公式进行分类
    • 计算分类结果的误差
    • 计算参数的值应该如何计算才能减小误差:假设其他参数都不变 只变化一个参数 得到一个平面上的曲线 神经网络和机器学习
    • 计算出一组新的参数值
    • 回到第二步
相关推荐
leo__5204 小时前
基于MATLAB的交互式多模型跟踪算法(IMM)实现
人工智能·算法·matlab
脑极体4 小时前
云厂商的AI决战
人工智能
njsgcs5 小时前
NVIDIA NitroGen 是强化学习还是llm
人工智能
知乎的哥廷根数学学派5 小时前
基于多模态特征融合和可解释性深度学习的工业压缩机异常分类与预测性维护智能诊断(Python)
网络·人工智能·pytorch·python·深度学习·机器学习·分类
mantch5 小时前
Nano Banana进行AI绘画中文总是糊?一招可重新渲染,清晰到可直接汇报
人工智能·aigc
编程小白_正在努力中5 小时前
第1章 机器学习基础
人工智能·机器学习
wyw00006 小时前
目标检测之SSD
人工智能·目标检测·计算机视觉
AKAMAI6 小时前
圆满循环:Akamai 的演进如何为 AI 推理时代奠定基石
人工智能·云计算
幻云20106 小时前
AI自动化编排:从入门到精通(基于Dify构建AI智能系统)
运维·人工智能·自动化
CoderJia程序员甲6 小时前
GitHub 热榜项目 - 日榜(2026-1-13)
人工智能·ai·大模型·github·ai教程