『不废话』之Llama 4实测小报

2025年4月5日Llama 4一开源,随后OpenRouter等平台就提供免费调用。对于中文社区来,官方的测评结果其实意义不大(原因先按下不表),就看知乎、微博、B站、twitter上的真实感受,最重要的是自己的真实案例测评。

核心架构创新

  • 混合专家(Mixture-of-Experts,MoE)架构 :Llama 4 Scout活跃参数约为170亿,内部包含16个专家,总参数量达1090亿;Llama 4 Maverick活跃参数同样约170亿,但包含多达128个专家,总参数量高达4000亿。Llama 4 Behemoth拥有2880亿活跃参数,采用16个专家,总参数量高达2万亿,目前尚未完全训练完毕、处于预览阶段的超大模型。

  • 原生多模态:能处理文本、图像、视频、音频等。

  • 超长上下文窗口:Llama 4 Scout模型的上下文窗口超过1000万token,Maverick模型上下文窗口约100万token。

  • 支持的语言(摘自于 https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct): 阿拉伯语、英语、法语、德语、印地语、印度尼西亚语、意大利语、葡萄牙语、西班牙语、他加禄语、泰语和越南语。没有中文!

训练数据

  • 预训练数据: 多种来源,包括公开可获得的数据、授权的数据,以及Meta自有产品和服务中的信息。从语言角度,Llama 4包含多达200种语言语料库,其中有100多种语言各有超过10亿token的训练数据。

  • 训练规模与资源消耗 :Llama 4 Scout的预训练耗费了约500万GPU小时,Maverick耗费了约238万GPU小时,总计约738万GPU小时。Meta使用自建的大规模GPU集群训练,大部分是NVIDIA H100 80GB,每块卡TDP功耗700W。简单换算一下,738万GPU小时相当于单卡连续算738万小时(84年!),当然实际是成千上万卡并行训练了数周到数月才完成的。可参考『不废话』之大模型训练数据中心算力和算效『不废话』之大模型训练并行策略文章进行定量的分析 。

  • 训练语料的数量:Llama 4 Scout预训练使用了约40万亿tokens,Maverick使用了约22万亿tokens,总计60多万亿token的多模态数据。

训练优化策略

Meta在Llama 4的后期训练(微调)上采用了一套精心设计的策略。他们发现,如果对模型进行过度的监督微调(SFT)或偏好优化,可能会过度约束模型,让它在一些方面反而退步。因此,他们采取了一种"轻量SFT → 在线RL → 轻量DPO"的流程。

性能评测

结论:Llama 4系列各个模型都有中文能力,但中文能力很弱。

数学能力

编码能力

此测评是想让模型根据给定的文本进行HTML网页编写,Llama 4的效果比DeepSeek V3的效果差太多了。

相关推荐
CareyWYR1 小时前
每周AI论文速递(251201-251205)
人工智能
北京耐用通信3 小时前
电磁阀通讯频频“掉链”?耐达讯自动化Ethernet/IP转DeviceNet救场全行业!
人工智能·物联网·网络协议·安全·自动化·信息与通信
cooldream20093 小时前
小智 AI 智能音箱深度体验全解析:人设、音色、记忆与多场景玩法的全面指南
人工智能·嵌入式硬件·智能音箱
oil欧哟3 小时前
AI 虚拟试穿实战,如何低成本生成模特上身图
人工智能·ai作画
央链知播3 小时前
中国移联元宇宙与人工智能产业委联席秘书长叶毓睿受邀到北京联合大学做大模型智能体现状与趋势专题报告
人工智能·科技·业界资讯
人工智能培训4 小时前
卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能·神经网络·cnn
YIN_尹4 小时前
目标检测模型量化加速在 openEuler 上的实现
人工智能·目标检测·计算机视觉
mys55184 小时前
杨建允:企业应对AI搜索趋势的实操策略
人工智能·geo·ai搜索优化·ai引擎优化
小毅&Nora4 小时前
【人工智能】【深度学习】 ⑦ 从零开始AI学习路径:从Python到大模型的实战指南
人工智能·深度学习·学习
牛阿大4 小时前
关于前馈神经网络
人工智能·深度学习·神经网络