基于时空相关性的风电功率预测模型matlab建模与仿真

目录

1.课题概述

2.系统仿真结果

3.核心程序与模型

4.系统原理简介

5.完整工程文件


1.课题概述

基于时空相关性的风电功率预测模型matlab建模与仿真。

2.系统仿真结果

三个风场24小时的预测误差间的Pearson相关系数,颜色越暖,相关性程度越高,相反颜色越冷越接近于蓝色,相关程度越低。

预测值的置信区间绘图。

在预测功率为0-0.1p.u. 以及预测功率接近风场的额定功率,即 0.8 - 1p.u. 时,预测误差的 t分布呈现瘦高趋势,误差总体较小,在预测功率在0.1 - 0.8p.u. 时,预测误差的 t 分布呈现矮胖趋势,误差总体较大。总体来看,预测误差与预测功率的相关关系规律呈现为:随着预测功率的增大先增大后减小。

上面四个图随机给出4天中的抽样模拟结果。选取风电场 A 作为研究对象,对每小时的风功率分布分别进行抽样100次,用柱状散点图画出其抽样生成的风功率值。

3.核心程序与模型

版本:Matlab2024b

复制代码
...................................................................
figure
subplot(221);
for i=1:24
    plot(X_samp(i,:),dat_samp(i,:),'.')
    hold on
end
plot(Pw1(:,1),'-dm','LineWidth',2,'MarkerSize',4,'MarkerFaceColor','m')
xlabel('时间(t/h)')
ylabel('功率(MW)')
title('风电场的采样功率及一天内的功率变化过程day1');


[X_samp,dat_samp]=func_power_changes(Pw1(:,2),data);

 
subplot(222);
for i=1:24
    plot(X_samp(i,:),dat_samp(i,:),'.')
    hold on
end
plot(Pw1(:,2),'-dm','LineWidth',2,'MarkerSize',4,'MarkerFaceColor','m')
xlabel('时间(t/h)')
ylabel('功率(MW)')
title('风电场的采样功率及一天内的功率变化过程day2');
 
[X_samp,dat_samp]=func_power_changes(Pw1(:,3),data);
subplot(223);
for i=1:24
    plot(X_samp(i,:),dat_samp(i,:),'.')
    hold on
end
plot(Pw1(:,3),'-dm','LineWidth',2,'MarkerSize',4,'MarkerFaceColor','m')
xlabel('时间(t/h)')
ylabel('功率(MW)')
title('风电场的采样功率及一天内的功率变化过程day3');


[X_samp,dat_samp]=func_power_changes(Pw1(:,4),data);
subplot(224);
for i=1:24
    plot(X_samp(i,:),dat_samp(i,:),'.')
    hold on
end
plot(Pw1(:,4),'-dm','LineWidth',2,'MarkerSize',4,'MarkerFaceColor','m')
xlabel('时间(t/h)')
ylabel('功率(MW)')
title('风电场的采样功率及一天内的功率变化过程day4');
109

4.系统原理简介

风电功率时间序列呈现出明显的时间依赖性,即当前时刻的功率值受过去若干时刻功率值的影响。自相关函数(ACF)可定量描述这种相关性。对于风电功率时间序列{Pt​}t=1N​,其滞后k步的自相关系数ρk​定义为:

其中,P=N1​∑t=1N​Pt​为时间序列的均值,N为序列长度。ρk​的取值范围为[−1,1],当ρk​接近1时,表示相隔k个时间步长的功率值具有较强的正相关,即变化趋势相似;当ρk​接近−1时,为强负相关;当ρk​接近0时,表明时间相关性较弱。例如,在平稳的气象条件下,短期内风电功率变化不大,相邻时刻功率值的自相关系数会较高。

不同地理位置的风电场,由于气象条件的空间连续性以及地形地貌的共同作用,其风电功率存在空间相关性。Moran's I 指数是常用的衡量空间自相关的指标。假设有n个风电场,其功率值为{Pi​}i=1n​,空间权重矩阵为W=(wij​),其中wij​表示风电场i与j之间的空间关系(如基于距离的倒数定义,距离越近权重越大),则 Moran's I 指数定义为:

式中,P=n1​∑i=1n​Pi​为所有风电场功率的均值。Moran's I 指数取值范围为[−1,1],I>0表示正空间自相关,即相邻风电场功率值具有相似性;I<0为负空间自相关;I=0意味着不存在空间自相关。在实际风电场布局中,地理位置相近的风电场往往受到相似的大气环流影响,其风电功率呈现正空间自相关。

5.完整工程文件

v

v

相关推荐
微光-沫年30 分钟前
141-CEEMDAN-VMD-Transformer-BiLSTM-ABKDE多变量区间预测模型!
算法·matlab·回归
Akangya1 小时前
Matlab-Simulink之步长
matlab
Python大数据分析@2 天前
Origin、MATLAB、Python 用于科研作图,哪个最好?
开发语言·python·matlab
牛马baby2 天前
MATLAB下载安装教程(附安装包)2025最新版(MATLAB R2024b)
开发语言·matlab
Evand J2 天前
【MATLAB例程】AOA与TDOA混合定位例程,适用于三维环境、4个锚点的情况,附下载链接
开发语言·matlab
m0_555762903 天前
Matlab 频谱分析 (Spectral Analysis)
开发语言·matlab
guygg883 天前
基于matlab的FIR滤波器
开发语言·算法·matlab
我爱C编程3 天前
基于拓扑结构检测的LDPC稀疏校验矩阵高阶环检测算法matlab仿真
算法·matlab·矩阵·ldpc·环检测
hie988944 天前
MATLAB锂离子电池伪二维(P2D)模型实现
人工智能·算法·matlab
88号技师4 天前
2025年6月一区-田忌赛马优化算法Tianji’s horse racing optimization-附Matlab免费代码
开发语言·算法·matlab·优化算法