MATLAB的脉搏信号分析预处理,包括去噪预处理、特征提取以及MATLAB-GUI界面的实现
1. 脉搏信号去噪预处理
脉搏信号在采集过程中容易受到多种噪声的干扰,常见的噪声包括基线漂移、工频干扰(50 Hz)和运动伪迹等。去噪预处理是脉搏信号分析的重要步骤,常用的去噪方法包括小波变换、滤波器等。
1.1 小波变换去噪
小波变换因其多分辨率特性,适合处理非平稳的脉搏信号。以下是基于小波变换的去噪代码示例:
matlab
% 加载原始脉搏数据
load('pulse_signal.mat'); % 假设文件名为 'pulse_signal.mat'
signal = pulse_signal;
% 设置小波基函数和分解层数
waveletName = 'db4';
level = 5;
[C, L] = wavedec(signal, level, waveletName);
% 应用软阈值去噪
thr = wthrmngr('dw1d', 'penalhi', length(signal), C);
Cdenoised = wthresh(C, 's', thr);
sigDenoised = waverec(Cdenoised, L, waveletName);
% 绘制原始信号和去噪后的信号
figure;
subplot(2,1,1);
plot(signal);
title('Original Pulse Signal');
xlabel('Sample Index');
ylabel('Amplitude');
subplot(2,1,2);
plot(sigDenoised);
title('Denoised Pulse Signal Using Wavelet Transform');
xlabel('Sample Index');
ylabel('Amplitude');
1.2 滤波器去噪
除了小波变换,还可以使用带通滤波器去除特定频率范围的噪声。例如,使用巴特沃斯滤波器去除基线漂移和工频干扰:
matlab
% 参数设置
fs = 360; % 采样频率
fc = [0.5 5]; % 带通滤波器的截止频率
[b, a] = butter(2, fc/(fs/2), 'bandpass'); % 二阶巴特沃斯带通滤波器
% 信号去噪
filteredSignal = filtfilt(b, a, signal);
% 绘制结果
figure;
subplot(2,1,1);
plot(signal);
title('Original Signal');
xlabel('Sample Index');
ylabel('Amplitude');
subplot(2,1,2);
plot(filteredSignal);
title('Filtered Signal');
xlabel('Sample Index');
ylabel('Amplitude');
2. 脉搏信号特征提取
去噪后的脉搏信号可以进一步进行特征提取,常见的特征包括脉搏周期、峰值、幅频特征等。
2.1 时域特征提取
提取脉搏信号的主波峰值、重搏波谷/峰和脉搏周期等特征:
matlab
% 检测脉搏信号的峰值
[peaks, locs] = findpeaks(filteredSignal, 'MinPeakProminence', 0.5);
% 计算脉搏周期
pulsePeriods = diff(locs);
meanPeriod = mean(pulsePeriods); % 平均脉搏周期
% 绘制脉搏信号及其峰值
figure;
plot(filteredSignal);
hold on;
plot(locs, peaks, 'r*');
title('Pulse Signal with Detected Peaks');
xlabel('Sample Index');
ylabel('Amplitude');
legend('Signal', 'Peaks');
2.2 频域特征提取
对脉搏信号进行傅里叶变换,提取其频域特征:
matlab
% 计算脉搏信号的频谱
N = length(filteredSignal);
Y = fft(filteredSignal);
P2 = abs(Y/N);
P1 = P2(1:N/2+1);
P1(2:end-1) = 2*P1(2:end-1);
% 频率轴
f = fs*(0:(N/2))/N;
% 绘制频谱
figure;
plot(f, P1);
title('Single-Sided Amplitude Spectrum of Pulse Signal');
xlabel('Frequency (f) [Hz]');
ylabel('|P1(f)|');
3. MATLAB-GUI界面设计
为了方便用户操作,可以设计一个基于MATLAB的图形用户界面(GUI)。以下是设计GUI界面的基本步骤:
3.1 创建GUI界面
使用MATLAB的guide
工具或appdesigner
创建一个简单的GUI界面,包含以下功能模块:
- 打开和加载脉搏信号数据
- 显示原始信号和去噪后的信号
- 提取和显示特征参数
- 保存分析结果
3.2 GUI界面代码示例
以下是一个简单的GUI代码示例,使用appdesigner
创建:
matlab
classdef PulseSignalApp < matlab.apps.AppBase
% Properties that correspond to app components
properties (Access = public)
UIFigure matlab.ui.Figure
LoadButton matlab.ui.control.Button
PlotButton matlab.ui.control.Button
SignalAxes matlab.ui.control.UIAxes
DenoiseButton matlab.ui.control.Button
FeatureButton matlab.ui.control.Button
end
% Callbacks that handle component events
methods (Access = private)
% Button pushed function: LoadButton
function loadButtonPushed(app, event)
[file, path] = uigetfile('*.mat');
if isequal(file, 0)
disp('User selected Cancel');
else
load(fullfile(path, file));
app.SignalData = signal; % 假设信号变量名为 signal
app.SignalAxes.Plot(app.SignalData);
end
end
% Button pushed function: PlotButton
function plotButtonPushed(app, event)
% 进行信号去噪
[denoisedSignal, ~] = denoiseSignal(app.SignalData);
app.SignalAxes.Plot(denoisedSignal);
end
% Button pushed function: DenoiseButton
function denoiseButtonPushed(app, event)
% 提取特征
[peaks, locs] = extractFeatures(app.SignalData);
app.SignalAxes.Plot(app.SignalData);
hold(app.SignalAxes, 'on');
app.SignalAxes.Plot(locs, peaks, 'r*');
hold(app.SignalAxes, 'off');
end
end
% Component initialization
methods (Access = private)
% Create UIFigure and components
function createComponents(app)
% Create UIFigure and hide until all components are created
app.UIFigure = uifigure('Visible', 'off');
app.UIFigure.Position = [100 100 640 480];
app.UIFigure.Name = 'Pulse Signal Analysis';
% Create LoadButton
app.LoadButton = uibutton(app.UIFigure, 'push');
app.LoadButton.Position = [100 400 100 22];
app.LoadButton.Text = 'Load Signal';
app.LoadButton.ButtonPushedFcn = createCallbackFcn(app, @loadButtonPushed, true);
% Create PlotButton
app.PlotButton = uibutton(app.UIFigure, 'push');
app.PlotButton.Position = [250 400 100 22];
app.PlotButton.Text = 'Plot Signal';
app.PlotButton.ButtonPushedFcn = createCallbackFcn(app, @plotButtonPushed, true);
% Create SignalAxes
app.SignalAxes = uiaxes(app.UIFigure);
app.SignalAxes.Position = [100 100 400 250];
% Create DenoiseButton
app.DenoiseButton = uibutton(app.UIFigure, 'push');
app.DenoiseButton.Position = [400 400 100 22];
app.DenoiseButton.Text = 'Denoise Signal';
app.DenoiseButton.ButtonPushedFcn = createCallbackFcn(app, @denoiseButtonPushed, true);
% Show the figure after all components are created
app.UIFigure.Visible = 'on';
end
end
% App initialization and construction
methods (Access = public)
% Construct app
function app = PulseSignalApp
% Create and configure components
createComponents(app)
% Register the app with App Designer
registerApp(app, app.UIFigure)
if nargout == 0
clear app
end
end
% Code that executes before app deletion
function delete(app)
% Delete UIFigure when app is deleted
delete(app.UIFigure)
end
end
end
参考代码 脉搏信号采集,去噪,特征提取 www.youwenfan.com/contentcsd/96401.html
小波变换和滤波器是常用的去噪方法,时域和频域特征提取可以为后续的分析提供重要信息,而GUI界面则使得操作更加方便和直观