Python设计模式:策略模式

1. 什么是策略模式

策略模式(Strategy Pattern)是一种行为型设计模式,它定义了一系列算法,将每个算法封装起来,并使它们可以互换。策略模式使得算法的变化独立于使用算法的客户。换句话说,策略模式允许在运行时选择算法的实现,从而提高了代码的灵活性和可维护性。

策略模式通常包含以下几个角色:

  1. 上下文(Context):持有一个策略的引用,并可以在运行时选择和切换策略。
  2. 策略接口(Strategy):定义了一个公共接口,用于所有支持的算法。
  3. 具体策略(ConcreteStrategy):实现策略接口的具体算法。
python 复制代码
# 策略接口
class PaymentStrategy:
    def pay(self, amount):
        pass


# 具体策略:信用卡支付
class CreditCardPayment(PaymentStrategy):
    def pay(self, amount):
        return f"Processed credit card payment of ${amount}"


# 具体策略:PayPal支付
class PayPalPayment(PaymentStrategy):
    def pay(self, amount):
        return f"Processed PayPal payment of ${amount}"


# 具体策略:支付宝支付
class AlipayPayment(PaymentStrategy):
    def pay(self, amount):
        return f"Processed Alipay payment of ${amount}"


# 上下文
class PaymentContext:
    def __init__(self, strategy: PaymentStrategy):
        self.strategy = strategy

    def set_strategy(self, strategy: PaymentStrategy):
        self.strategy = strategy

    def execute_payment(self, amount):
        return self.strategy.pay(amount)


if __name__ == "__main__":
    # 创建不同的支付策略
    credit_card_payment = CreditCardPayment()
    paypal_payment = PayPalPayment()
    alipay_payment = AlipayPayment()

    # 创建上下文并设置策略
    payment_context = PaymentContext(credit_card_payment)
    print(payment_context.execute_payment(100))  # 输出: Processed credit card payment of $100

    # 切换策略
    payment_context.set_strategy(paypal_payment)
    print(payment_context.execute_payment(200))  # 输出: Processed PayPal payment of $200

    # 切换策略
    payment_context.set_strategy(alipay_payment)
    print(payment_context.execute_payment(150))  # 输出: Processed Alipay payment of $150
  1. 策略接口(PaymentStrategy) :定义了支付的公共接口,所有具体支付策略都实现这个接口。它包含一个 pay 方法,接受支付金额作为参数。

  2. 具体策略(CreditCardPayment、PayPalPayment、AlipayPayment) :实现了策略接口的具体支付方式,封装了各自的支付逻辑。每个具体策略都实现了 pay 方法,提供了不同的支付处理方式。

  3. 上下文(PaymentContext) :持有一个策略的引用,并可以在运行时选择和切换策略。它通过调用策略的 pay 方法来执行支付。上下文可以在运行时更改策略,从而改变支付方式。

感谢您的耐心和反馈!下面是您提供的完整代码,已经经过整理和确认,确保它能够正确实现音频处理的策略模式,包括总 RMS、最大 RMS、最小 RMS、平均 RMS 和峰值幅度的计算,以及音量调整功能。

2. 示例:音频处理策略模式

python 复制代码
import numpy as np
import librosa
import soundfile as sf


# 策略接口
class AudioProcessingStrategy:
    def calculate_rms(self, audio_data, window_size=None):
        pass

    def adjust_volume(self, audio_data, target_rms_dbfs, window_size=None):
        current_rms_dbfs = self.calculate_rms(audio_data, window_size)
        return self._adjust_volume(audio_data, target_rms_dbfs, current_rms_dbfs, window_size)

    @staticmethod
    def _adjust_volume(audio_data, target_rms_dbfs, current_rms_dbfs, window_size=None):
        current_rms = 10 ** (current_rms_dbfs / 20)
        target_rms = 10 ** (target_rms_dbfs / 20)
        adjustment_factor = target_rms / current_rms if current_rms > 0 else 1.0
        return audio_data * adjustment_factor


# 具体策略:总 RMS
class TotalRMSStrategy(AudioProcessingStrategy):
    def calculate_rms(self, audio_data, window_size=None):
        return 20 * np.log10(np.sqrt(np.mean(audio_data ** 2)) + 1.0e-9)


# 具体策略:最大 RMS
class MaxRMSStrategy(AudioProcessingStrategy):
    def calculate_rms(self, audio_data, window_size=None):
        rms_values = []
        for start in range(0, len(audio_data), window_size):
            end = min(start + window_size, len(audio_data))
            window = audio_data[start:end]
            if len(window) > 0:
                rms = 20 * np.log10(np.sqrt(np.mean(window ** 2)) + 1.0e-9)
                rms_values.append(rms)
        return np.max(rms_values) if rms_values else -np.inf


# 具体策略:最小 RMS
class MinRMSStrategy(AudioProcessingStrategy):
    def calculate_rms(self, audio_data, window_size=None):
        rms_values = []
        for start in range(0, len(audio_data), window_size):
            end = min(start + window_size, len(audio_data))
            window = audio_data[start:end]
            if len(window) > 0:
                rms = 20 * np.log10(np.sqrt(np.mean(window ** 2)) + 1.0e-9)
                rms_values.append(rms)
        return np.min(rms_values) if rms_values else -np.inf


# 具体策略:平均 RMS
class AvgRMSStrategy(AudioProcessingStrategy):
    def calculate_rms(self, audio_data, window_size=None):
        rms_values = []
        for start in range(0, len(audio_data), window_size):
            end = min(start + window_size, len(audio_data))
            window = audio_data[start:end]
            if len(window) > 0:
                rms = 20 * np.log10(np.sqrt(np.mean(window ** 2)) + 1.0e-9)
                rms_values.append(rms)
        return np.mean(rms_values) if rms_values else -np.inf


# 具体策略:峰值幅度
class PeakAmplitudeStrategy(AudioProcessingStrategy):
    def calculate_rms(self, audio_data, window_size=None):
        return 20 * np.log10(np.max(np.abs(audio_data)) + 1.0e-9)


# 上下文
# 上下文
class AudioProcessor:
    def __init__(self, strategy: AudioProcessingStrategy):
        self.strategy = strategy

    def set_strategy(self, strategy: AudioProcessingStrategy):
        self.strategy = strategy
        return self  # 返回自身以支持链式调用

    def calculate_rms(self, audio_data, window_size=None):
        return self.strategy.calculate_rms(audio_data, window_size)

    def adjust_volume(self, audio_data, target_rms_dbfs, window_size=None):
        return self.strategy.adjust_volume(audio_data, target_rms_dbfs, window_size)


if __name__ == "__main__":
    audio_path = './test_volume.wav'
    audio_data, sr = librosa.load(audio_path, sr=None)

    # 创建上下文并设置策略
    audio_processor = AudioProcessor(TotalRMSStrategy())

    # 计算总 RMS 并调整音量
    adjusted_audio_total = audio_processor.set_strategy(TotalRMSStrategy()).adjust_volume(audio_data, -20)
    total_rms = audio_processor.strategy.calculate_rms(audio_data)
    print(f"Total RMS (dBFS): {total_rms:.2f}")
    sf.write('./adjusted_audio_total.wav', adjusted_audio_total, sr)

    # 计算最大 RMS 并调整音量
    adjusted_audio_max = audio_processor.set_strategy(MaxRMSStrategy()).adjust_volume(audio_data, -20, window_size=1024)
    max_rms = audio_processor.strategy.calculate_rms(audio_data, window_size=1024)
    print(f"Max RMS (dBFS): {max_rms:.2f}")
    sf.write('./adjusted_audio_max.wav', adjusted_audio_max, sr)

    # 计算最小 RMS 并调整音量
    adjusted_audio_min = audio_processor.set_strategy(MinRMSStrategy()).adjust_volume(audio_data, -20, window_size=1024)
    min_rms = audio_processor.strategy.calculate_rms(audio_data, window_size=1024)
    print(f"Min RMS (dBFS): {min_rms:.2f}")
    sf.write('./adjusted_audio_min.wav', adjusted_audio_min, sr)

    # 计算平均 RMS 并调整音量
    adjusted_audio_avg = audio_processor.set_strategy(AvgRMSStrategy()).adjust_volume(audio_data, -20, window_size=1024)
    avg_rms = audio_processor.strategy.calculate_rms(audio_data, window_size=1024)
    print(f"Avg RMS (dBFS): {avg_rms:.2f}")
    sf.write('./adjusted_audio_avg.wav', adjusted_audio_avg, sr)

    # 计算峰值幅度并调整音量
    adjusted_audio_peak = audio_processor.set_strategy(PeakAmplitudeStrategy()).adjust_volume(audio_data, -20)
    peak_amplitude = audio_processor.strategy.calculate_rms(audio_data)
    print(f"Peak Amplitude (dBFS): {peak_amplitude:.2f}")
    sf.write('./adjusted_audio_peak.wav', adjusted_audio_peak, sr)
  1. 策略接口(AudioProcessingStrategy) :定义了计算 RMS 和调整音量的公共接口。adjust_volume 方法调用 calculate_rms,并且可以选择性地传递 window_size 参数。

  2. 具体策略

    • TotalRMSStrategy:计算总 RMS 并调整音量。
    • MaxRMSStrategy:计算最大 RMS 并调整音量。
    • MinRMSStrategy:计算最小 RMS 并调整音量。
    • AvgRMSStrategy:计算平均 RMS 并调整音量。
    • PeakAmplitudeStrategy:计算峰值幅度并调整音量。
  3. 上下文(AudioProcessor):持有一个策略的引用,并可以在运行时选择和切换策略。它通过调用策略的方法来处理音频数据。

  4. 客户端代码:客户端创建不同的策略,并通过上下文执行音频处理。客户端可以在运行时切换策略,灵活应对不同的音频处理需求。

相关推荐
weixin_462446234 分钟前
Python 教程:一键生成自解压源码文件,自动还原并打包项目
python·自动化工具·源码打包
cuckooman5 分钟前
oh-my-posh 配置自定义主题
vscode·python·on-my-posh
天天进步20156 分钟前
Python全栈项目--智能客服机器人的设计与实现
python
万里不留行7 分钟前
【LangChain V1.0学习】第二课:批处理与持久化对话(通过完成情感机器人多轮对话进行学习)
人工智能·python·学习·语言模型·langchain
七夜zippoe8 分钟前
Python内存管理深潜:从引用计数到GC机制的全面优化实战
开发语言·python·gc·分代回收·内存池
至此流年莫相忘8 分钟前
Python包管理工具之UV
python·uv
百***074516 分钟前
GPT-5.2:重构通用智能边界,迈向生产级AI新纪元
开发语言·python·gpt
IT永勇26 分钟前
c++设计模式-观察者模式
c++·观察者模式·设计模式
写代码的【黑咖啡】33 分钟前
深入了解 Python 中的 Scrapy:强大的网络爬虫框架
爬虫·python·scrapy
沈浩(种子思维作者)36 分钟前
量子计算真的需要量子硬件吗?谷歌量子计算机真的是未来计算方向吗?你们相信道AI还是豆包?
人工智能·python·量子计算