【Flink运行时架构】组件构成

在Flink的运行架构中,有两大比较重要的组件:作业管理器(JobManager)和任务管理器(TaskManager)。

Flink的作业提交与任务处理时的系统如下图所示。

其中,客户端并不是处理系统的一部分,只是负责作业提交,在作业提交之后,可选择与JobManager断开连接。接下来,重点介绍一下JobManager和TaskManager在整个过程中所扮演的角色。

JobManager

JobManager是Flink集群中一个任务管理和调度的核心,是控制应用执行的主进程,每一个应用都应该被唯一的JM控制执行。在高可用的场景下,可能会出现多个JM,但是也只有一个正在运行的Leader节点,其余都是备用。JM又包含三个组件:JobMaster、ResourceManager、Dispatcher。

JobMaster

我们把对数据进行处理的操作统称为任务(task),多个任务按照一定的先后顺序连接起来,就构成了作业(job)。而JobMaster是负责处理单独的作业,因此JobMaster和具体的job是一一对应的。

也就是说,多个job是可以运行在一个Flink集群上的,而每一个job则都有一个自己的JobMaster。

JobMaster在接收到客户端提交的应用后,会把作业图转换成一个物理层面的数据流图,也就是执行图,它包含了所有可以并发执行的任务。JobMaster会向资源管理器发出请求,申请执行任务必要的资源,一旦获取了足够资源,就会将执行图分发到真正运行他们的TaskManager上。

ResourceManager

ResourceManager主要负责资源的分配和管理,在Flink集群中只有一个。这里的资源是指TaskManager的任务槽(slot),它包含了机器用来执行计算的一组CPU和内存。每个任务都需要被分配到一个任务槽中执行。

这里的ResourceManager其实是Flink内置的,注意和其他资源管理平台区分开,比如K8S、YARN等。

TaskManager中的任务槽都会向ResourceManager注册的,当ResourceManager没有足够的任务槽时,它可以向资源管理平台发起会话,请求提供启动TaskManager进程的容器。

Dispatcher

Dispatcher主要负责提供一个REST接口,用来与集群进行交互和管理,负责为每一个新提交的作业启动一个新的JobMaser组件,以及启动一个WebUI用于展示和监控作业执行信息。

TaskManager

每个TaskManager都包含了一定数量的任务槽,任务槽是资源调度的最小单位,其数量限制了TaskManager能够并发处理的任务数量。

TaskManager启动之后,会向ResourceManager注册它的任务槽,收到指令后,TaskManager就会将一个或者多个任务槽提供给JobMaster用于分配任务的调用。

相关推荐
狼爷9 小时前
高并发与分布式系统中的幂等处理
架构
小北方城市网9 小时前
第1课:架构设计核心认知|从0建立架构思维(架构系列入门课)
大数据·网络·数据结构·python·架构·数据库架构
收获不止数据库9 小时前
黄仁勋2026CES演讲复盘:旧世界,裂开了!
大数据·数据库·人工智能·职场和发展
老胡全房源系统9 小时前
房产中介管理系统哪一款性价比高
大数据·人工智能·房产经纪人培训
黄焖鸡能干四碗10 小时前
信息安全网络安全评估报告(WORD)
大数据·网络·人工智能·安全·web安全·制造·需求分析
职业码农NO.110 小时前
AI 技术栈完整解析,从 GPU 到应用的五层架构
人工智能·架构·系统架构·aigc·agent
汤姆yu10 小时前
基于python大数据的协同过滤音乐推荐系统
大数据·开发语言·python
云小逸10 小时前
【windows系统编程】第一章 Windows 系统核心架构与基础概念
windows·架构
Data_agent10 小时前
Cssbuy 模式淘宝 / 1688 代购系统南美市场搭建指南
大数据·python
川西胖墩墩10 小时前
团队协作泳道图制作工具 PC中文免费
大数据·论文阅读·人工智能·架构·流程图