【Flink运行时架构】组件构成

在Flink的运行架构中,有两大比较重要的组件:作业管理器(JobManager)和任务管理器(TaskManager)。

Flink的作业提交与任务处理时的系统如下图所示。

其中,客户端并不是处理系统的一部分,只是负责作业提交,在作业提交之后,可选择与JobManager断开连接。接下来,重点介绍一下JobManager和TaskManager在整个过程中所扮演的角色。

JobManager

JobManager是Flink集群中一个任务管理和调度的核心,是控制应用执行的主进程,每一个应用都应该被唯一的JM控制执行。在高可用的场景下,可能会出现多个JM,但是也只有一个正在运行的Leader节点,其余都是备用。JM又包含三个组件:JobMaster、ResourceManager、Dispatcher。

JobMaster

我们把对数据进行处理的操作统称为任务(task),多个任务按照一定的先后顺序连接起来,就构成了作业(job)。而JobMaster是负责处理单独的作业,因此JobMaster和具体的job是一一对应的。

也就是说,多个job是可以运行在一个Flink集群上的,而每一个job则都有一个自己的JobMaster。

JobMaster在接收到客户端提交的应用后,会把作业图转换成一个物理层面的数据流图,也就是执行图,它包含了所有可以并发执行的任务。JobMaster会向资源管理器发出请求,申请执行任务必要的资源,一旦获取了足够资源,就会将执行图分发到真正运行他们的TaskManager上。

ResourceManager

ResourceManager主要负责资源的分配和管理,在Flink集群中只有一个。这里的资源是指TaskManager的任务槽(slot),它包含了机器用来执行计算的一组CPU和内存。每个任务都需要被分配到一个任务槽中执行。

这里的ResourceManager其实是Flink内置的,注意和其他资源管理平台区分开,比如K8S、YARN等。

TaskManager中的任务槽都会向ResourceManager注册的,当ResourceManager没有足够的任务槽时,它可以向资源管理平台发起会话,请求提供启动TaskManager进程的容器。

Dispatcher

Dispatcher主要负责提供一个REST接口,用来与集群进行交互和管理,负责为每一个新提交的作业启动一个新的JobMaser组件,以及启动一个WebUI用于展示和监控作业执行信息。

TaskManager

每个TaskManager都包含了一定数量的任务槽,任务槽是资源调度的最小单位,其数量限制了TaskManager能够并发处理的任务数量。

TaskManager启动之后,会向ResourceManager注册它的任务槽,收到指令后,TaskManager就会将一个或者多个任务槽提供给JobMaster用于分配任务的调用。

相关推荐
ml130185288741 小时前
开发一个环保回收小程序需要哪些功能?环保回收小程序
java·大数据·微信小程序·小程序·开源软件
zybishe2 小时前
免费送源码:Java+ssm+MySQL 酒店预订管理系统的设计与实现 计算机毕业设计原创定制
java·大数据·python·mysql·微信小程序·php·课程设计
塔能物联运维4 小时前
塔能科技解节能密码,工厂成本“效益方程式”精准破题
大数据·人工智能
喵叔哟4 小时前
14.【.NET 8 实战--孢子记账--从单体到微服务--转向微服务】--微服务基础工具与技术--CAP
微服务·架构·.net
Lilith的AI学习日记5 小时前
MetaGPT深度解析:重塑AI协作开发的智能体框架实践指南
大数据·人工智能·机器学习·aigc
JKIT沐枫7 小时前
PHP如何能获取网站上返回的数组指南
android·大数据
鸿乃江边鸟7 小时前
Starrocks的Bitmap索引和Bloom filter索引以及全局字典
大数据·starrocks·sql
黎明鱼儿7 小时前
高可用架构:Keepalived、Nginx与Docker深度解析
nginx·docker·架构
文火冰糖的硅基工坊7 小时前
[创业之路-366]:投资尽职调查 - 尽调核心逻辑与核心影响因素:价值、估值、退出、风险、策略
架构·管理·公司·战略·治理
Hadoop_Liang8 小时前
openEuler24.03 LTS下安装Spark
大数据·分布式·spark·openeuler