【Flink运行时架构】组件构成

在Flink的运行架构中,有两大比较重要的组件:作业管理器(JobManager)和任务管理器(TaskManager)。

Flink的作业提交与任务处理时的系统如下图所示。

其中,客户端并不是处理系统的一部分,只是负责作业提交,在作业提交之后,可选择与JobManager断开连接。接下来,重点介绍一下JobManager和TaskManager在整个过程中所扮演的角色。

JobManager

JobManager是Flink集群中一个任务管理和调度的核心,是控制应用执行的主进程,每一个应用都应该被唯一的JM控制执行。在高可用的场景下,可能会出现多个JM,但是也只有一个正在运行的Leader节点,其余都是备用。JM又包含三个组件:JobMaster、ResourceManager、Dispatcher。

JobMaster

我们把对数据进行处理的操作统称为任务(task),多个任务按照一定的先后顺序连接起来,就构成了作业(job)。而JobMaster是负责处理单独的作业,因此JobMaster和具体的job是一一对应的。

也就是说,多个job是可以运行在一个Flink集群上的,而每一个job则都有一个自己的JobMaster。

JobMaster在接收到客户端提交的应用后,会把作业图转换成一个物理层面的数据流图,也就是执行图,它包含了所有可以并发执行的任务。JobMaster会向资源管理器发出请求,申请执行任务必要的资源,一旦获取了足够资源,就会将执行图分发到真正运行他们的TaskManager上。

ResourceManager

ResourceManager主要负责资源的分配和管理,在Flink集群中只有一个。这里的资源是指TaskManager的任务槽(slot),它包含了机器用来执行计算的一组CPU和内存。每个任务都需要被分配到一个任务槽中执行。

这里的ResourceManager其实是Flink内置的,注意和其他资源管理平台区分开,比如K8S、YARN等。

TaskManager中的任务槽都会向ResourceManager注册的,当ResourceManager没有足够的任务槽时,它可以向资源管理平台发起会话,请求提供启动TaskManager进程的容器。

Dispatcher

Dispatcher主要负责提供一个REST接口,用来与集群进行交互和管理,负责为每一个新提交的作业启动一个新的JobMaser组件,以及启动一个WebUI用于展示和监控作业执行信息。

TaskManager

每个TaskManager都包含了一定数量的任务槽,任务槽是资源调度的最小单位,其数量限制了TaskManager能够并发处理的任务数量。

TaskManager启动之后,会向ResourceManager注册它的任务槽,收到指令后,TaskManager就会将一个或者多个任务槽提供给JobMaster用于分配任务的调用。

相关推荐
黄俊懿39 分钟前
【深入理解SpringCloud微服务】Seata(AT模式)源码解析——@GlobalTransactional注解与@globalLock生效的原理
java·spring cloud·微服务·云原生·架构·系统架构·架构师
B站计算机毕业设计之家1 小时前
基于大数据热门旅游景点数据分析可视化平台 数据大屏 Flask框架 Echarts可视化大屏
大数据·爬虫·python·机器学习·数据分析·spark·旅游
Jackeyzhe2 小时前
Flink学习笔记:如何做容错
flink
黄俊懿2 小时前
【深入理解SpringCloud微服务】Seata(AT模式)源码解析——开启全局事务
java·数据库·spring·spring cloud·微服务·架构·架构师
宇擎智脑科技3 小时前
Flutter 对接高德地图 SDK 适配鸿蒙踩坑记录与通信架构解析
flutter·架构·harmonyos
Xの哲學3 小时前
Linux DRM 架构深度解析
linux·服务器·算法·架构·边缘计算
Tezign_space3 小时前
抖音AI运营工具技术实践:特赞内容矩阵架构与300%效率提升方案
人工智能·架构·aigc·内容运营·抖音·ai营销工具·特赞
亿坊电商3 小时前
无人共享茶室智慧化破局:24H智能接单系统的架构实践与运营全景!
大数据·人工智能·架构
老蒋新思维3 小时前
创客匠人峰会新解:AI 时代知识变现的 “信任分层” 法则 —— 从流量到高客单的进阶密码
大数据·网络·人工智能·tcp/ip·重构·创始人ip·创客匠人
Jerry.张蒙3 小时前
SAP业财一体化实现的“隐形桥梁”-价值串
大数据·数据库·人工智能·学习·区块链·aigc·运维开发