【Flink运行时架构】组件构成

在Flink的运行架构中,有两大比较重要的组件:作业管理器(JobManager)和任务管理器(TaskManager)。

Flink的作业提交与任务处理时的系统如下图所示。

其中,客户端并不是处理系统的一部分,只是负责作业提交,在作业提交之后,可选择与JobManager断开连接。接下来,重点介绍一下JobManager和TaskManager在整个过程中所扮演的角色。

JobManager

JobManager是Flink集群中一个任务管理和调度的核心,是控制应用执行的主进程,每一个应用都应该被唯一的JM控制执行。在高可用的场景下,可能会出现多个JM,但是也只有一个正在运行的Leader节点,其余都是备用。JM又包含三个组件:JobMaster、ResourceManager、Dispatcher。

JobMaster

我们把对数据进行处理的操作统称为任务(task),多个任务按照一定的先后顺序连接起来,就构成了作业(job)。而JobMaster是负责处理单独的作业,因此JobMaster和具体的job是一一对应的。

也就是说,多个job是可以运行在一个Flink集群上的,而每一个job则都有一个自己的JobMaster。

JobMaster在接收到客户端提交的应用后,会把作业图转换成一个物理层面的数据流图,也就是执行图,它包含了所有可以并发执行的任务。JobMaster会向资源管理器发出请求,申请执行任务必要的资源,一旦获取了足够资源,就会将执行图分发到真正运行他们的TaskManager上。

ResourceManager

ResourceManager主要负责资源的分配和管理,在Flink集群中只有一个。这里的资源是指TaskManager的任务槽(slot),它包含了机器用来执行计算的一组CPU和内存。每个任务都需要被分配到一个任务槽中执行。

这里的ResourceManager其实是Flink内置的,注意和其他资源管理平台区分开,比如K8S、YARN等。

TaskManager中的任务槽都会向ResourceManager注册的,当ResourceManager没有足够的任务槽时,它可以向资源管理平台发起会话,请求提供启动TaskManager进程的容器。

Dispatcher

Dispatcher主要负责提供一个REST接口,用来与集群进行交互和管理,负责为每一个新提交的作业启动一个新的JobMaser组件,以及启动一个WebUI用于展示和监控作业执行信息。

TaskManager

每个TaskManager都包含了一定数量的任务槽,任务槽是资源调度的最小单位,其数量限制了TaskManager能够并发处理的任务数量。

TaskManager启动之后,会向ResourceManager注册它的任务槽,收到指令后,TaskManager就会将一个或者多个任务槽提供给JobMaster用于分配任务的调用。

相关推荐
在未来等你15 小时前
Elasticsearch面试精讲 Day 27:备份恢复与灾难恢复
大数据·分布式·elasticsearch·搜索引擎·面试
涛思数据(TDengine)15 小时前
TDengine TSDB 3.3.8.0 上线:SMA、TLS、TDgpt、taosX、taosgen 一次全进化
大数据·数据库·时序数据库·tdengine
酷柚易汛智推官15 小时前
基于MemU的自主代理记忆管理系统:技术解析与实践
java·安全·架构
研究司马懿15 小时前
【GitOps】Argo CD app of apps
大数据·开发语言·elasticsearch·搜索引擎·云原生·argocd·gitops
Hilaku15 小时前
一个函数超过20行? 聊聊我的函数式代码洁癖
前端·javascript·架构
qqxhb15 小时前
系统架构设计师备考第49天——数字孪生体&云计算&大数据技术
大数据·系统架构·云计算·saas·paas·iaas·数字孪生体
盖雅工场16 小时前
企业用工成本高、留人难?零工管家以数字化管理实现精准控本与人才留存
大数据
hans汉斯16 小时前
【计算机科学与应用】基于多光谱成像与边缘计算的物流安全风险预警模式及系统实现
大数据·数据库·人工智能·设计模式·机器人·边缘计算·论文笔记
皮皮学姐分享-ppx17 小时前
上市公司CEO IT背景数据(2007-2024)
大数据·人工智能·经验分享·科技·区块链
呆呆小金人17 小时前
SQL入门:别名使用完全指南
大数据·数据库·数据仓库·sql·数据库开发·etl·etl工程师