数据分析-数据预处理

数据分析-数据预处理

处理重复值

duplicated( )查找重复值

python 复制代码
import pandas as pd
a=pd.DataFrame(data=[['A',19],['B',19],['C',20],['A',19],['C',20]],
               columns=['name','age'])
print(a)
print('--------------------------')
a=a.duplicated()
print(a)

只判断全局不判断每个

any()

python 复制代码
import pandas as pd
a=pd.DataFrame(data=[['A',19],['B',19],['C',20],['A',19],['C',20]],
               columns=['name','age'])
print(a)
print('--------------------------')
a=any(a.duplicated())
print(a)

drop_duplicates( )删除重复值

参数inplace 是否在原数据上修改

python 复制代码
import pandas as pd
a=pd.DataFrame(data=[['A',19],['B',19],['C',20],['A',19],['C',20]],
               columns=['name','age'])
print(a)
print('--------------------------')
b=a.drop_duplicates(inplace=False)
a.drop_duplicates(inplace=True)
print(a)
print('--------------------------')
print(b)

处理缺失值

NaN表示缺失值

python 复制代码
import pandas as pd
a=pd.read_csv(r'text.csv')
print(a)

isnull( )判断所有位置元素是否缺失

python 复制代码
import pandas as pd
a=pd.read_csv(r'text.csv')
print(a.isnull())

any( )判断行列元素是否缺失

python 复制代码
import pandas as pd
a=pd.read_csv(r'text.csv')
print(a.isnull().any())
print(a.isnull().any(axis=1))

del( )dropna( )删除

python 复制代码
import pandas as pd
a=pd.read_csv(r'text.csv')
del a['name']
print(a)
python 复制代码
import pandas as pd
a=pd.read_csv(r'text.csv')
b=a.dropna(axis=0)
print(b)
c=a.dropna(axis=1)
print(c)

del( )删除指定列,dropna( )删除含有缺失值的列(行)

fillna( )缺失值填补

python 复制代码
import pandas as pda=pd.read_csv(r'text.csv')a=a.fillna('wu')print(a)

根据上(下)数据填充

pad / ffill: 按照上一行进行填充

backfill / bfill: 按照下一行进行填充

python 复制代码
import pandas as pda=pd.read_csv(r'text.csv')print(a)print('---------------------')b=a.fillna(method='pad')print(b)print('---------------------')c=a.fillna(method='bfill')print(c)

数值型数据填充

平均值mean()

每列的平均值填充

python 复制代码
import pandas as pda=pd.read_csv(r'text.csv')
print(a)
print('---------------------')
a=a.fillna(a.mean())
print(a)

中位数median( )

python 复制代码
import pandas as pd
a=pd.read_csv(r'text.csv')
print(a)print('---------------------')
a=a.fillna(a.median( ))
print(a)

字符型数据填充

众数mode( )

python 复制代码
import pandas as pd
a=pd.read_csv(r'text.csv')
print(a)
print('---------------------')
for i in a.columns:
    a[i] = a[i].fillna(a[i].mode()[0])
    print(a)

数据变换

map( )数据转换

python 复制代码
import pandas as pd
data={'sex':[1,0,1,1,0]}
a=pd.DataFrame(data)
a['sex-T']=a['sex'].map({1:'男',0:'女'})
print(a)

哑变量

python 复制代码
import pandas as pd
data={'sex':['男','女','男','女','保密']}
a=pd.DataFrame(data)
a=pd.get_dummies(a)
print(a)
相关推荐
火星数据-Tina11 小时前
AI数据分析在体育中的应用:技术与实践
人工智能·数据挖掘·数据分析
Theodore_102214 小时前
大数据(1) 大数据概述
大数据·hadoop·数据分析·spark·hbase
Jay Kay15 小时前
ReLU 新生:从死亡困境到强势回归
人工智能·数据挖掘·回归
Blossom.11815 小时前
使用Python和Flask构建简单的机器学习API
人工智能·python·深度学习·目标检测·机器学习·数据挖掘·flask
生信学术纵览15 小时前
中科院1区顶刊|IF14+:多组学MR联合单细胞时空分析,锁定心血管代谢疾病的免疫治疗新靶点
数据挖掘·数据分析
壹氿17 小时前
Supersonic 新一代AI数据分析平台
人工智能·数据挖掘·数据分析
SelectDB技术团队18 小时前
Apache Doris + MCP:Agent 时代的实时数据分析底座
人工智能·数据挖掘·数据分析·apache·mcp
企销客CRM21 小时前
CRM管理软件的数据可视化功能使用技巧:让数据驱动决策
信息可视化·数据挖掘·数据分析·用户运营
人大博士的交易之路1 天前
今日行情明日机会——20250606
大数据·数学建模·数据挖掘·数据分析·涨停回马枪
产品何同学1 天前
数据分析后台设计指南:实战案例解析与5大设计要点总结
数据挖掘·数据分析·产品经理·墨刀·原型设计·后台管理系统·数据分析后台