数据分析-数据预处理

数据分析-数据预处理

处理重复值

duplicated( )查找重复值

python 复制代码
import pandas as pd
a=pd.DataFrame(data=[['A',19],['B',19],['C',20],['A',19],['C',20]],
               columns=['name','age'])
print(a)
print('--------------------------')
a=a.duplicated()
print(a)

只判断全局不判断每个

any()

python 复制代码
import pandas as pd
a=pd.DataFrame(data=[['A',19],['B',19],['C',20],['A',19],['C',20]],
               columns=['name','age'])
print(a)
print('--------------------------')
a=any(a.duplicated())
print(a)

drop_duplicates( )删除重复值

参数inplace 是否在原数据上修改

python 复制代码
import pandas as pd
a=pd.DataFrame(data=[['A',19],['B',19],['C',20],['A',19],['C',20]],
               columns=['name','age'])
print(a)
print('--------------------------')
b=a.drop_duplicates(inplace=False)
a.drop_duplicates(inplace=True)
print(a)
print('--------------------------')
print(b)

处理缺失值

NaN表示缺失值

python 复制代码
import pandas as pd
a=pd.read_csv(r'text.csv')
print(a)

isnull( )判断所有位置元素是否缺失

python 复制代码
import pandas as pd
a=pd.read_csv(r'text.csv')
print(a.isnull())

any( )判断行列元素是否缺失

python 复制代码
import pandas as pd
a=pd.read_csv(r'text.csv')
print(a.isnull().any())
print(a.isnull().any(axis=1))

del( )dropna( )删除

python 复制代码
import pandas as pd
a=pd.read_csv(r'text.csv')
del a['name']
print(a)
python 复制代码
import pandas as pd
a=pd.read_csv(r'text.csv')
b=a.dropna(axis=0)
print(b)
c=a.dropna(axis=1)
print(c)

del( )删除指定列,dropna( )删除含有缺失值的列(行)

fillna( )缺失值填补

python 复制代码
import pandas as pda=pd.read_csv(r'text.csv')a=a.fillna('wu')print(a)

根据上(下)数据填充

pad / ffill: 按照上一行进行填充

backfill / bfill: 按照下一行进行填充

python 复制代码
import pandas as pda=pd.read_csv(r'text.csv')print(a)print('---------------------')b=a.fillna(method='pad')print(b)print('---------------------')c=a.fillna(method='bfill')print(c)

数值型数据填充

平均值mean()

每列的平均值填充

python 复制代码
import pandas as pda=pd.read_csv(r'text.csv')
print(a)
print('---------------------')
a=a.fillna(a.mean())
print(a)

中位数median( )

python 复制代码
import pandas as pd
a=pd.read_csv(r'text.csv')
print(a)print('---------------------')
a=a.fillna(a.median( ))
print(a)

字符型数据填充

众数mode( )

python 复制代码
import pandas as pd
a=pd.read_csv(r'text.csv')
print(a)
print('---------------------')
for i in a.columns:
    a[i] = a[i].fillna(a[i].mode()[0])
    print(a)

数据变换

map( )数据转换

python 复制代码
import pandas as pd
data={'sex':[1,0,1,1,0]}
a=pd.DataFrame(data)
a['sex-T']=a['sex'].map({1:'男',0:'女'})
print(a)

哑变量

python 复制代码
import pandas as pd
data={'sex':['男','女','男','女','保密']}
a=pd.DataFrame(data)
a=pd.get_dummies(a)
print(a)
相关推荐
郜太素1 小时前
决策树+泰坦尼克号生存案例
人工智能·算法·决策树·机器学习·数据挖掘·学习方法
databook1 小时前
『Plotly实战指南』--雷达图绘制与应用
python·数据分析·数据可视化
派可数据BI可视化11 小时前
数据中台、BI业务访谈(二):组织架构梳理的坑
数据仓库·人工智能·信息可视化·数据分析·商业智能bi
晨曦54321011 小时前
绘图与数据可视化
信息可视化·数据挖掘·数据分析
岁月如歌,青春不败14 小时前
CMIP6数据分析与可视化、降尺度技术与气候变化的区域影响、极端气候分析
人工智能·数据挖掘·数据分析·大气科学·气象学·cmip6·地球科学
qq_2147826117 小时前
Python Orange:托拉拽玩转机器学习、数据挖掘!
开发语言·python·数据分析
Chh071519 小时前
[特殊字符] 第十四讲 | 空间异质性检验与地统计局部指标(LISA)应用
arcgis·数据分析·r语言
Chh071521 小时前
[特殊字符] 第十三讲 | 地统计模拟与空间不确定性评估
分类·数据分析·r语言·学习方法
chat2tomorrow1 天前
如何在数据仓库中集成数据共享服务?
数据仓库·mysql·低代码·数据分析·sql2api
Code_流苏1 天前
《Python星球日记》第25天:Pandas 数据分析
python·数据分析·pandas·数据聚合·时间序列