1.MCP入门-大模型函数调用的概念

大模型函数调用示例

一. 大模型函数调用的流程

二、函数调用

2.1 Function call 功能

函数调用功能可以增强模型推理效果或进行其他外部操作,包括信息检索、数据库操作、知识图谱搜索与推理、操作系统、触发外部操作等工具调用场景。

需要注意的是,大模型的 Function call 不会执行任何函数调用,仅返回调用函数所需要的参数。开发者可以利用模型输出的参数在应用中执行函数调用。 执行。 但研读了DEEKSEEK 的 Function call 之后,发现不是这样的

2.2 DEEKSEEK 是如何进行函数调用的

假设我们要创建一个具备查询航班功能的聊天机器人

2.2.1 定义外部函数

我们定义如下两个外部函数供模型选择调用:

    1. 查询两地之间某日航班号函数:get_flight_number(departure: str, destination: str, date: str)
    1. 查询某航班某日票价函数:get_ticket_price(flight_number: str, date: str)

为了向模型描述外部函数库,需要向 tools 字段传入可以调用的函数列表。参数如下表:

参数名称 类型 是否必填 参数说明
type String 设置为function
function Object
name String 函数名称
description String 用于描述函数功能。模型会根据这段描述决定函数调用方式。
parameters Object parameters字段需要传入一个 Json Schema 对象,以准确地定义函数所接受的参数。若调用函数时不需要传入参数,省略该参数即可。
required 指定哪些属性在数据中必须被包含。

三.相关代码

python 复制代码
import json
from openai import OpenAI

def get_flight_number(date:str , departure:str , destination:str):
    flight_number = {
        "北京":{
            "上海" : "1234",
            "广州" : "8321",
        },
        "上海":{
            "北京" : "1233",
            "广州" : "8123",
        }
    }
    return { "flight_number":flight_number[departure][destination] }
def get_ticket_price(date:str , flight_number:str):
    return {"ticket_price": "1000"}



tools = [
    {
        "type": "function",
        "function": {
            "name": "get_flight_number",
            "description": "根据始发地、目的地和日期,查询对应日期的航班号",
            "parameters": {
                "type": "object",
                "properties": {
                    "departure": {
                        "description": "出发地",
                        "type": "string"
                    },
                    "destination": {
                        "description": "目的地",
                        "type": "string"
                    },
                    "date": {
                        "description": "日期",
                        "type": "string",
                    }
                },
                "required": [ "departure", "destination", "date" ]
            },
        }
    },
    {
        "type": "function",
        "function": {
            "name": "get_ticket_price",
            "description": "查询某航班在某日的票价",
            "parameters": {
                "type": "object",
                "properties": {
                    "flight_number": {
                        "description": "航班号",
                        "type": "string"
                    },
                    "date": {
                        "description": "日期",
                        "type": "string",
                    }
                },
                "required": [ "flight_number", "date"]
            },
        }
    },
]


client = OpenAI(
    api_key="sk-apikey",
    base_url="https://api.deepseek.com",
)


def parse_function_call(model_response,messages):
    # 处理函数调用结果,根据模型返回参数,调用对应的函数。
    # 调用函数返回结果后构造tool message,再次调用模型,将函数结果输入模型
    # 模型会将函数调用结果以自然语言格式返回给用户。
    if model_response.choices[0].message.tool_calls:
        tool_call = model_response.choices[0].message.tool_calls[0]
        args = tool_call.function.arguments
        function_result = {}
        if tool_call.function.name == "get_flight_number":
            function_result = get_flight_number(**json.loads(args))
        if tool_call.function.name == "get_ticket_price":
            function_result = get_ticket_price(**json.loads(args))
        messages.append({
            "role": "tool",
            "content": f"{json.dumps(function_result)}",
            "tool_call_id":tool_call.id
        })
        response = client.chat.completions.create(
            model="deepseek-chat",  # 填写需要调用的模型名称
            messages=messages,
            tools=tools,
        )
        print(response.choices[0].message)
        messages.append(response.choices[0].message.model_dump())

# 清空对话
messages = []

messages.append({"role": "system", "content": "不要假设或猜测传入函数的参数值。如果用户的描述不明确,请要求用户提供必要信息"})
messages.append({"role": "user", "content": "帮我查询1月23日,北京到广州的航班"})

response = client.chat.completions.create(
    model="deepseek-chat",
    messages=messages,
    tools=tools
)
print(response.choices[0].message)
messages.append(response.choices[0].message.model_dump())

parse_function_call(response,messages)
相关推荐
冒泡的肥皂9 分钟前
强大的ANTLR4语法解析器入门demo
后端·搜索引擎·编程语言
IT_陈寒35 分钟前
Element Plus 2.10.0 重磅发布!新增Splitter组件
前端·人工智能·后端
有梦想的攻城狮1 小时前
spring中的@RabbitListener注解详解
java·后端·spring·rabbitlistener
Java水解1 小时前
MySQL DQL全面解析:从入门到精通
后端·mysql
Aurora_NeAr1 小时前
Apache Spark详解
大数据·后端·spark
程序员岳焱1 小时前
Java 程序员成长记(二):菜鸟入职之 MyBatis XML「陷阱」
java·后端·程序员
hello早上好1 小时前
BeanFactory 实现
后端·spring·架构
我命由我123451 小时前
Spring Boot 项目集成 Redis 问题:RedisTemplate 多余空格问题
java·开发语言·spring boot·redis·后端·java-ee·intellij-idea
面朝大海,春不暖,花不开1 小时前
Spring Boot消息系统开发指南
java·spring boot·后端
程序员岳焱1 小时前
Java 程序员成长记(三):菜鸟入职之@Transactional「罢工」
java·后端·编程语言