1.MCP入门-大模型函数调用的概念

大模型函数调用示例

一. 大模型函数调用的流程

二、函数调用

2.1 Function call 功能

函数调用功能可以增强模型推理效果或进行其他外部操作,包括信息检索、数据库操作、知识图谱搜索与推理、操作系统、触发外部操作等工具调用场景。

需要注意的是,大模型的 Function call 不会执行任何函数调用,仅返回调用函数所需要的参数。开发者可以利用模型输出的参数在应用中执行函数调用。 执行。 但研读了DEEKSEEK 的 Function call 之后,发现不是这样的

2.2 DEEKSEEK 是如何进行函数调用的

假设我们要创建一个具备查询航班功能的聊天机器人

2.2.1 定义外部函数

我们定义如下两个外部函数供模型选择调用:

    1. 查询两地之间某日航班号函数:get_flight_number(departure: str, destination: str, date: str)
    1. 查询某航班某日票价函数:get_ticket_price(flight_number: str, date: str)

为了向模型描述外部函数库,需要向 tools 字段传入可以调用的函数列表。参数如下表:

参数名称 类型 是否必填 参数说明
type String 设置为function
function Object
name String 函数名称
description String 用于描述函数功能。模型会根据这段描述决定函数调用方式。
parameters Object parameters字段需要传入一个 Json Schema 对象,以准确地定义函数所接受的参数。若调用函数时不需要传入参数,省略该参数即可。
required 指定哪些属性在数据中必须被包含。

三.相关代码

python 复制代码
import json
from openai import OpenAI

def get_flight_number(date:str , departure:str , destination:str):
    flight_number = {
        "北京":{
            "上海" : "1234",
            "广州" : "8321",
        },
        "上海":{
            "北京" : "1233",
            "广州" : "8123",
        }
    }
    return { "flight_number":flight_number[departure][destination] }
def get_ticket_price(date:str , flight_number:str):
    return {"ticket_price": "1000"}



tools = [
    {
        "type": "function",
        "function": {
            "name": "get_flight_number",
            "description": "根据始发地、目的地和日期,查询对应日期的航班号",
            "parameters": {
                "type": "object",
                "properties": {
                    "departure": {
                        "description": "出发地",
                        "type": "string"
                    },
                    "destination": {
                        "description": "目的地",
                        "type": "string"
                    },
                    "date": {
                        "description": "日期",
                        "type": "string",
                    }
                },
                "required": [ "departure", "destination", "date" ]
            },
        }
    },
    {
        "type": "function",
        "function": {
            "name": "get_ticket_price",
            "description": "查询某航班在某日的票价",
            "parameters": {
                "type": "object",
                "properties": {
                    "flight_number": {
                        "description": "航班号",
                        "type": "string"
                    },
                    "date": {
                        "description": "日期",
                        "type": "string",
                    }
                },
                "required": [ "flight_number", "date"]
            },
        }
    },
]


client = OpenAI(
    api_key="sk-apikey",
    base_url="https://api.deepseek.com",
)


def parse_function_call(model_response,messages):
    # 处理函数调用结果,根据模型返回参数,调用对应的函数。
    # 调用函数返回结果后构造tool message,再次调用模型,将函数结果输入模型
    # 模型会将函数调用结果以自然语言格式返回给用户。
    if model_response.choices[0].message.tool_calls:
        tool_call = model_response.choices[0].message.tool_calls[0]
        args = tool_call.function.arguments
        function_result = {}
        if tool_call.function.name == "get_flight_number":
            function_result = get_flight_number(**json.loads(args))
        if tool_call.function.name == "get_ticket_price":
            function_result = get_ticket_price(**json.loads(args))
        messages.append({
            "role": "tool",
            "content": f"{json.dumps(function_result)}",
            "tool_call_id":tool_call.id
        })
        response = client.chat.completions.create(
            model="deepseek-chat",  # 填写需要调用的模型名称
            messages=messages,
            tools=tools,
        )
        print(response.choices[0].message)
        messages.append(response.choices[0].message.model_dump())

# 清空对话
messages = []

messages.append({"role": "system", "content": "不要假设或猜测传入函数的参数值。如果用户的描述不明确,请要求用户提供必要信息"})
messages.append({"role": "user", "content": "帮我查询1月23日,北京到广州的航班"})

response = client.chat.completions.create(
    model="deepseek-chat",
    messages=messages,
    tools=tools
)
print(response.choices[0].message)
messages.append(response.choices[0].message.model_dump())

parse_function_call(response,messages)
相关推荐
该用户已不存在23 分钟前
你没有听说过的7个Windows开发必备工具
前端·windows·后端
David爱编程41 分钟前
深入 Java synchronized 底层:字节码解析与 MonitorEnter 原理全揭秘
java·后端
KimLiu1 小时前
LCODER之Python:使用Django搭建服务端
后端·python·django
再学一点就睡1 小时前
双 Token 认证机制:从原理到实践的完整实现
前端·javascript·后端
yunxi_051 小时前
终于搞懂布隆了
后端
用户1512905452202 小时前
Langfuse-开源AI观测分析平台,结合dify工作流
后端
南囝coding2 小时前
Claude Code 从入门到精通:最全配置指南和工具推荐
前端·后端
会开花的二叉树3 小时前
彻底搞懂 Linux 基础 IO:从文件操作到缓冲区,打通底层逻辑
linux·服务器·c++·后端
lizhongxuan3 小时前
Spec-Kit 使用指南
后端
会豪3 小时前
工业仿真(simulation)--发生器,吸收器,缓冲区(2)
后端