leetcode 3504 回文+最长公共子数组

题目的拆解很重要,我们先把 s 2 s2 s2 反过来,即我们先要找到 s 1 s1 s1 和 s 2 s2 s2 最长公共子串,再找到 s 1 s1 s1 中结尾的最长回文串。

定义 d p 1 [ i ] dp1[i] dp1[i] 为 s 1 s1 s1 中以 i i i 开头的最长回文串长度

定义 d p 3 [ i ] dp3[i] dp3[i] 为 s 1 s1 s1 中以 i i i 结尾的最长后缀长度

那么,我们只需要枚举 s 1 s1 s1 中每个字符即可,代码如下:

注:是否要用 # 进行额外操作?其实是不用的,因为额外考虑两个元素并列的情况,不需要花费太多代码,# 和最长后缀数组加起来,反而会有额外的边界情况,故不建议这么做。

cpp 复制代码
typedef vector<int> V;
class Solution {
public:
    int process(string& s1, string& s2){
        // 设计dp1数组,dp1[i] = s1 i元素开头的最长回文子串长度
        int n1 = s1.size(), n2 = s2.size();
        vector<int> dp1(n1, 1);
        for(int i=0;i<n1;i++){
            // case 1
            for(int j=1;j<=n1;j++){
                int l = i-j, r = i+j;
                if(l < 0 or r >= n1)break;
                if(s1[l] != s1[r])break;
                if(r-l+1 > dp1[l])dp1[l] = r-l+1;
            }
            // case2
            if(i+1 < n1 and s1[i] == s1[i+1]){
                if(dp1[i] < 2)dp1[i] = 2;
                for(int j=1;j<=n1;j++){
                    int l = i-j, r = i+1+j;
                    if(l < 0 or r >= n1)break;
                    if(s1[l] != s1[r])break;
                    if(r-l+1 > dp1[l])dp1[l] = r-l+1;
                }
            }
        }

        // 设计dp2数组,dp2[i][j] = s1 i-1下标结尾,s2 j-1下标结尾的最长后缀长度
        // 设计dp3数组,dp3[i] = s1 i下标结尾的最长后缀长度
        vector<V> dp2(n1+1, V(n2+1, 0));
        V dp3(n1, 0);

        for(int i=1;i<=n1;i++){
            for(int j=1;j<=n2;j++){
                if(s1[i-1] == s2[j-1]){
                    dp2[i][j] = dp2[i-1][j-1] + 1;
                    if(dp2[i][j] > dp3[i-1])dp3[i-1] = dp2[i][j];
                }
                else dp2[i][j] = 0;
            }
        }

        // 遍历s1 0 - n1-1,取到最大数组的开头和结尾
        int max_len = 0, ans = 0;
        for(int i=0;i<=n1;i++){
            int l = 0, r = 0;
            if(i-1 >= 0 and i-1 < n1)l = dp3[i-1]*2;
            if(i >= 0 and i < n1)r = dp1[i];
            if(l+r > max_len){
                max_len = l+r;
            }
        }

        return max_len;
    }

    int longestPalindrome(string s, string t) {
        reverse(t.begin(), t.end());
        return max(process(s, t), process(t, s));
    }
};
相关推荐
励志要当大牛的小白菜2 小时前
ART配对软件使用
开发语言·c++·qt·算法
qq_513970442 小时前
力扣 hot100 Day56
算法·leetcode
PAK向日葵3 小时前
【算法导论】如何攻克一道Hard难度的LeetCode题?以「寻找两个正序数组的中位数」为例
c++·算法·面试
爱喝矿泉水的猛男5 小时前
非定长滑动窗口(持续更新)
算法·leetcode·职场和发展
YuTaoShao5 小时前
【LeetCode 热题 100】131. 分割回文串——回溯
java·算法·leetcode·深度优先
YouQian7726 小时前
Traffic Lights set的使用
算法
go54631584657 小时前
基于深度学习的食管癌右喉返神经旁淋巴结预测系统研究
图像处理·人工智能·深度学习·神经网络·算法
aramae8 小时前
大话数据结构之<队列>
c语言·开发语言·数据结构·算法
大锦终8 小时前
【算法】前缀和经典例题
算法·leetcode
想变成树袋熊8 小时前
【自用】NLP算法面经(6)
人工智能·算法·自然语言处理