leetcode 3504 回文+最长公共子数组

题目的拆解很重要,我们先把 s 2 s2 s2 反过来,即我们先要找到 s 1 s1 s1 和 s 2 s2 s2 最长公共子串,再找到 s 1 s1 s1 中结尾的最长回文串。

定义 d p 1 [ i ] dp1[i] dp1[i] 为 s 1 s1 s1 中以 i i i 开头的最长回文串长度

定义 d p 3 [ i ] dp3[i] dp3[i] 为 s 1 s1 s1 中以 i i i 结尾的最长后缀长度

那么,我们只需要枚举 s 1 s1 s1 中每个字符即可,代码如下:

注:是否要用 # 进行额外操作?其实是不用的,因为额外考虑两个元素并列的情况,不需要花费太多代码,# 和最长后缀数组加起来,反而会有额外的边界情况,故不建议这么做。

cpp 复制代码
typedef vector<int> V;
class Solution {
public:
    int process(string& s1, string& s2){
        // 设计dp1数组,dp1[i] = s1 i元素开头的最长回文子串长度
        int n1 = s1.size(), n2 = s2.size();
        vector<int> dp1(n1, 1);
        for(int i=0;i<n1;i++){
            // case 1
            for(int j=1;j<=n1;j++){
                int l = i-j, r = i+j;
                if(l < 0 or r >= n1)break;
                if(s1[l] != s1[r])break;
                if(r-l+1 > dp1[l])dp1[l] = r-l+1;
            }
            // case2
            if(i+1 < n1 and s1[i] == s1[i+1]){
                if(dp1[i] < 2)dp1[i] = 2;
                for(int j=1;j<=n1;j++){
                    int l = i-j, r = i+1+j;
                    if(l < 0 or r >= n1)break;
                    if(s1[l] != s1[r])break;
                    if(r-l+1 > dp1[l])dp1[l] = r-l+1;
                }
            }
        }

        // 设计dp2数组,dp2[i][j] = s1 i-1下标结尾,s2 j-1下标结尾的最长后缀长度
        // 设计dp3数组,dp3[i] = s1 i下标结尾的最长后缀长度
        vector<V> dp2(n1+1, V(n2+1, 0));
        V dp3(n1, 0);

        for(int i=1;i<=n1;i++){
            for(int j=1;j<=n2;j++){
                if(s1[i-1] == s2[j-1]){
                    dp2[i][j] = dp2[i-1][j-1] + 1;
                    if(dp2[i][j] > dp3[i-1])dp3[i-1] = dp2[i][j];
                }
                else dp2[i][j] = 0;
            }
        }

        // 遍历s1 0 - n1-1,取到最大数组的开头和结尾
        int max_len = 0, ans = 0;
        for(int i=0;i<=n1;i++){
            int l = 0, r = 0;
            if(i-1 >= 0 and i-1 < n1)l = dp3[i-1]*2;
            if(i >= 0 and i < n1)r = dp1[i];
            if(l+r > max_len){
                max_len = l+r;
            }
        }

        return max_len;
    }

    int longestPalindrome(string s, string t) {
        reverse(t.begin(), t.end());
        return max(process(s, t), process(t, s));
    }
};
相关推荐
王中阳Go16 小时前
从超市收银到航空调度:贪心算法如何破解生活中的最优决策谜题?
java·后端·算法
故事挺秃然17 小时前
中文分词:机械分词算法详解与实践总结
算法·nlp
车队老哥记录生活19 小时前
【MPC】模型预测控制笔记 (3):无约束输出反馈MPC
笔记·算法
地平线开发者20 小时前
BEV 感知算法评价指标简介
算法·自动驾驶
不过四级不改名67720 小时前
用c语言实现简易c语言扫雷游戏
c语言·算法·游戏
C++ 老炮儿的技术栈1 天前
手动实现strcpy
c语言·开发语言·c++·算法·visual studio
倔强的石头_1 天前
【数据结构与算法】利用堆结构高效解决TopK问题
后端·算法
倔强的石头_1 天前
【数据结构与算法】详解二叉树下:实践篇————通过链式结构深入理解并实现二叉树
后端·算法
哎写bug的程序员1 天前
leetcode复盘(1)
算法·leetcode·职场和发展
风靡晚1 天前
用于汽车毫米波雷达的四维高分辨率点云图像
人工智能·算法·机器学习·计算机视觉·汽车·信息与通信·信号处理