目录

leetcode 3504 回文+最长公共子数组

题目的拆解很重要,我们先把 s 2 s2 s2 反过来,即我们先要找到 s 1 s1 s1 和 s 2 s2 s2 最长公共子串,再找到 s 1 s1 s1 中结尾的最长回文串。

定义 d p 1 [ i ] dp1[i] dp1[i] 为 s 1 s1 s1 中以 i i i 开头的最长回文串长度

定义 d p 3 [ i ] dp3[i] dp3[i] 为 s 1 s1 s1 中以 i i i 结尾的最长后缀长度

那么,我们只需要枚举 s 1 s1 s1 中每个字符即可,代码如下:

注:是否要用 # 进行额外操作?其实是不用的,因为额外考虑两个元素并列的情况,不需要花费太多代码,# 和最长后缀数组加起来,反而会有额外的边界情况,故不建议这么做。

cpp 复制代码
typedef vector<int> V;
class Solution {
public:
    int process(string& s1, string& s2){
        // 设计dp1数组,dp1[i] = s1 i元素开头的最长回文子串长度
        int n1 = s1.size(), n2 = s2.size();
        vector<int> dp1(n1, 1);
        for(int i=0;i<n1;i++){
            // case 1
            for(int j=1;j<=n1;j++){
                int l = i-j, r = i+j;
                if(l < 0 or r >= n1)break;
                if(s1[l] != s1[r])break;
                if(r-l+1 > dp1[l])dp1[l] = r-l+1;
            }
            // case2
            if(i+1 < n1 and s1[i] == s1[i+1]){
                if(dp1[i] < 2)dp1[i] = 2;
                for(int j=1;j<=n1;j++){
                    int l = i-j, r = i+1+j;
                    if(l < 0 or r >= n1)break;
                    if(s1[l] != s1[r])break;
                    if(r-l+1 > dp1[l])dp1[l] = r-l+1;
                }
            }
        }

        // 设计dp2数组,dp2[i][j] = s1 i-1下标结尾,s2 j-1下标结尾的最长后缀长度
        // 设计dp3数组,dp3[i] = s1 i下标结尾的最长后缀长度
        vector<V> dp2(n1+1, V(n2+1, 0));
        V dp3(n1, 0);

        for(int i=1;i<=n1;i++){
            for(int j=1;j<=n2;j++){
                if(s1[i-1] == s2[j-1]){
                    dp2[i][j] = dp2[i-1][j-1] + 1;
                    if(dp2[i][j] > dp3[i-1])dp3[i-1] = dp2[i][j];
                }
                else dp2[i][j] = 0;
            }
        }

        // 遍历s1 0 - n1-1,取到最大数组的开头和结尾
        int max_len = 0, ans = 0;
        for(int i=0;i<=n1;i++){
            int l = 0, r = 0;
            if(i-1 >= 0 and i-1 < n1)l = dp3[i-1]*2;
            if(i >= 0 and i < n1)r = dp1[i];
            if(l+r > max_len){
                max_len = l+r;
            }
        }

        return max_len;
    }

    int longestPalindrome(string s, string t) {
        reverse(t.begin(), t.end());
        return max(process(s, t), process(t, s));
    }
};
本文是转载文章,点击查看原文
如有侵权,请联系 xyy@jishuzhan.net 删除
相关推荐
小羊不会c++吗(黑客小羊)8 分钟前
c++头文件知识
算法
拓端研究室TRL28 分钟前
PyMC+AI提示词贝叶斯项目反应IRT理论Rasch分析篮球比赛官方数据:球员能力与位置层级结构研究
大数据·人工智能·python·算法·机器学习
CoovallyAIHub1 小时前
Vision Transformers与卷积神经网络详细训练对比(附代码)
深度学习·算法·计算机视觉
地平线开发者1 小时前
征程 6 逆向自证hbm与bc一致性
算法·自动驾驶
算AI1 小时前
LLM用于科学假设生成:探索与挑战
人工智能·算法
1白天的黑夜11 小时前
贪心算法-2208.将数组和减半的最小操作数-力扣(LeetCode)
c++·算法·leetcode·贪心算法
格格Code2 小时前
八大排序——冒泡排序/归并排序
数据结构·算法·排序算法
Dream it possible!2 小时前
LeetCode 热题 100_最小路径和(92_64_中等_C++)(多维动态规划)
c++·leetcode·动态规划
vim怎么退出2 小时前
46.二叉树展开为链表
前端·leetcode
C语言魔术师2 小时前
62.不同路径
算法·leetcode·动态规划