spark中,shuffle read和shuffle write的先后顺序是什么

在Apache Spark中,Shuffle WriteShuffle Read的先后顺序是明确的:

  1. Shuffle Write(先发生)

    • 在父Stage(如Map Stage)的任务(Task)执行时,数据会根据目标分区的规则(如Hash或Sort)被重新分区和排序,并写入本地磁盘(或外部存储)。这一步称为Shuffle Write。
    • 父Stage的所有Task必须完成Shuffle Write后,子Stage才能开始执行。
  2. Shuffle Read(后发生)

    • 在子Stage(如Reduce Stage)的任务(Task)执行时,会从多个父Stage的节点上拉取(Fetch)属于自己分区的数据,这一步称为Shuffle Read。
    • 子Stage的Task会合并、排序或聚合读取的数据,继续后续计算。

关键点总结

  • 顺序 :严格遵循先Write后Read,由Stage的依赖关系保证。
  • 数据持久化:Shuffle Write的数据会持久化到磁盘,避免重复计算和容错问题。
  • 性能瓶颈:Shuffle涉及磁盘I/O和网络传输,是Spark作业优化的重点。

示例流程

text 复制代码
Map Stage (父Stage)
  → Task1: 处理数据 → Shuffle Write(写入本地磁盘)
  → Task2: 处理数据 → Shuffle Write(写入本地磁盘)
  → ...所有Map Task完成...

Reduce Stage (子Stage)
  → Task1: Shuffle Read(从多个节点拉取数据)→ 处理数据
  → Task2: Shuffle Read(从多个节点拉取数据)→ 处理数据
  → ...所有Reduce Task完成...

优化建议

  • 减少Shuffle数据量(如使用reduceByKey替代groupByKey)。
  • 调整分区数(spark.sql.shuffle.partitions)。
  • 使用高效的序列化方式(如Kryo)。

通过理解Shuffle的顺序和机制,可以更好地优化Spark作业的性能。

相关推荐
程序猿阿伟9 分钟前
《分布式软总线牵手云服务,拓展应用新维度》
分布式
恒拓高科WorkPlus13 分钟前
BeeWorks:打造安全可控的企业内网即时通讯平台
大数据·人工智能·安全
恒拓高科WorkPlus2 小时前
一款安全好用的企业即时通讯平台,支持统一门户
大数据·人工智能·安全
Debug_TheWorld2 小时前
Kafka学习
大数据·中间件
掘金-我是哪吒2 小时前
分布式微服务系统架构第102集:JVM调优支撑高并发、低延迟、高稳定性场景
jvm·分布式·微服务·架构·系统架构
迷人的小荔枝2 小时前
spark-core
spark
不要不开心了3 小时前
sparkcore编程算子
pytorch·分布式·算法·pygame
java1234_小锋4 小时前
Zookeeper的典型应用场景?
分布式·zookeeper·云原生
BenBen尔4 小时前
spark的堆外内存,是在jvm内还是操作系统内存内?
大数据·jvm·hadoop·spark
乌旭4 小时前
从Ampere到Hopper:GPU架构演进对AI模型训练的颠覆性影响
人工智能·pytorch·分布式·深度学习·机器学习·ai·gpu算力