spark中,shuffle read和shuffle write的先后顺序是什么

在Apache Spark中,Shuffle WriteShuffle Read的先后顺序是明确的:

  1. Shuffle Write(先发生)

    • 在父Stage(如Map Stage)的任务(Task)执行时,数据会根据目标分区的规则(如Hash或Sort)被重新分区和排序,并写入本地磁盘(或外部存储)。这一步称为Shuffle Write。
    • 父Stage的所有Task必须完成Shuffle Write后,子Stage才能开始执行。
  2. Shuffle Read(后发生)

    • 在子Stage(如Reduce Stage)的任务(Task)执行时,会从多个父Stage的节点上拉取(Fetch)属于自己分区的数据,这一步称为Shuffle Read。
    • 子Stage的Task会合并、排序或聚合读取的数据,继续后续计算。

关键点总结

  • 顺序 :严格遵循先Write后Read,由Stage的依赖关系保证。
  • 数据持久化:Shuffle Write的数据会持久化到磁盘,避免重复计算和容错问题。
  • 性能瓶颈:Shuffle涉及磁盘I/O和网络传输,是Spark作业优化的重点。

示例流程

text 复制代码
Map Stage (父Stage)
  → Task1: 处理数据 → Shuffle Write(写入本地磁盘)
  → Task2: 处理数据 → Shuffle Write(写入本地磁盘)
  → ...所有Map Task完成...

Reduce Stage (子Stage)
  → Task1: Shuffle Read(从多个节点拉取数据)→ 处理数据
  → Task2: Shuffle Read(从多个节点拉取数据)→ 处理数据
  → ...所有Reduce Task完成...

优化建议

  • 减少Shuffle数据量(如使用reduceByKey替代groupByKey)。
  • 调整分区数(spark.sql.shuffle.partitions)。
  • 使用高效的序列化方式(如Kryo)。

通过理解Shuffle的顺序和机制,可以更好地优化Spark作业的性能。

相关推荐
weixin_4723394625 分钟前
StarRocks部署方案详解:从单机到分布式集群
分布式
王子文-上海1 小时前
风控研发大数据学习路线
大数据·学习
仟濹6 小时前
【HTML】基础学习【数据分析全栈攻略:爬虫+处理+可视化+报告】
大数据·前端·爬虫·数据挖掘·数据分析·html
viperrrrrrrrrr78 小时前
大数据学习(125)-hive数据分析
大数据·学习
仟濹8 小时前
「数据采集与网络爬虫(使用Python工具)」【数据分析全栈攻略:爬虫+处理+可视化+报告】
大数据·爬虫·python·数据挖掘·数据分析
鼓掌MVP9 小时前
软件工程方法论:在确定性与不确定性的永恒之舞中寻找平衡
大数据·软件工程
伊克罗德信息科技9 小时前
基于RPA技术的ECRobot企业智能体解决方案,打通企业自动化业务流程的最后一公里
大数据·人工智能
Elastic 中国社区官方博客9 小时前
Elastic 和 AWS 合作将 GenAI 引入 DevOps、安全和搜索领域
大数据·数据库·elasticsearch·搜索引擎·云计算·全文检索·aws
乱世刀疤9 小时前
深度 |推动公共数据按需有序安全流动
大数据
Mikhail_G10 小时前
Python应用for循环临时变量作用域
大数据·运维·开发语言·python·数据分析