torch.cat和torch.stack的区别

torch.cattorch.stack 是 PyTorch 中用于组合张量的两个常用函数,它们的核心区别在于输入张量的维度和输出张量的维度变化。以下是详细对比:

1. torch.cat (Concatenate)

  • 作用 :沿现有维度 拼接多个张量,不创建新维度

  • 输入要求 :所有张量的形状必须除拼接维度外完全相同

  • 语法

    python 复制代码
    torch.cat(tensors, dim=0)  # dim 指定拼接的维度
  • 示例

    python 复制代码
    a = torch.tensor([[1, 2], [3, 4]])  # shape (2, 2)
    b = torch.tensor([[5, 6]])           # shape (1, 2)
    
    # 沿 dim=0 拼接(行方向)
    c = torch.cat([a, b], dim=0)
    print(c)
    # tensor([[1, 2],
    #         [3, 4],
    #         [5, 6]])  # shape (3, 2)
  • 特点

    • 拼接后的张量在指定维度上的大小是输入张量该维度大小的总和。

    • 其他维度必须完全一致。

2. torch.stack

  • 作用 :沿新维度 堆叠多个张量,创建新维度

  • 输入要求 :所有张量的形状必须完全相同

  • 语法

    python 复制代码
    torch.stack(tensors, dim=0)  # dim 指定新维度的位置
  • 示例

    python 复制代码
    a = torch.tensor([1, 2])  # shape (2,)
    b = torch.tensor([3, 4])  # shape (2,)
    
    # 沿新维度 dim=0 堆叠
    c = torch.stack([a, b], dim=0)
    print(c)
    # tensor([[1, 2],
    #         [3, 4]])  # shape (2, 2)
    
    # 沿新维度 dim=1 堆叠
    d = torch.stack([a, b], dim=1)
    print(d)
    # tensor([[1, 3],
    #         [2, 4]])  # shape (2, 2)
  • 特点

    • 输出张量比输入张量多一个维度

    • 适用于将多个相同形状的张量合并为批次(如 batch_size 维度)。

3. 关键区别总结

4. 直观对比示例

假设有两个张量:

python 复制代码
x = torch.tensor([1, 2])  # shape (2,)
y = torch.tensor([3, 4])  # shape (2,)

torch.cat 结果

python 复制代码
torch.cat([x, y], dim=0)  # tensor([1, 2, 3, 4]), shape (4,)

torch.stack 结果

python 复制代码
torch.stack([x, y], dim=0)  # tensor([[1, 2], [3, 4]]), shape (2, 2)

5. 如何选择?

  • torch.cat 当需要扩展现有维度(如拼接多个特征图)。

  • torch.stack 当需要创建新维度(如构建批次数据或堆叠不同模型的输出)

通过理解两者的维度变化逻辑,可以避免常见的形状错误(如 size mismatch)。

相关推荐
paid槮1 小时前
机器学习总结
人工智能·深度学习·机器学习
Hello123网站1 小时前
职得AI简历-免费AI简历生成工具
人工智能·ai工具
亚里随笔2 小时前
稳定且高效:GSPO如何革新大型语言模型的强化学习训练?
人工智能·机器学习·语言模型·自然语言处理·llm·rlhf
荼蘼2 小时前
机器学习之PCA降维
人工智能·机器学习
东方不败之鸭梨的测试笔记2 小时前
智能测试用例生成工具设计
人工智能·ai·langchain
失散134 小时前
深度学习——02 PyTorch
人工智能·pytorch·深度学习
Re_draw_debubu4 小时前
神经网络 小土堆pytorch记录
pytorch·神经网络·小土堆
图灵学术计算机论文辅导4 小时前
傅里叶变换+attention机制,深耕深度学习领域
人工智能·python·深度学习·计算机网络·考研·机器学习·计算机视觉
重启的码农7 小时前
ggml 介绍(4) 计算图 (ggml_cgraph)
c++·人工智能
重启的码农7 小时前
ggml 介绍(5) GGUF 上下文 (gguf_context)
c++·人工智能·神经网络