torch.cat和torch.stack的区别

torch.cattorch.stack 是 PyTorch 中用于组合张量的两个常用函数,它们的核心区别在于输入张量的维度和输出张量的维度变化。以下是详细对比:

1. torch.cat (Concatenate)

  • 作用 :沿现有维度 拼接多个张量,不创建新维度

  • 输入要求 :所有张量的形状必须除拼接维度外完全相同

  • 语法

    python 复制代码
    torch.cat(tensors, dim=0)  # dim 指定拼接的维度
  • 示例

    python 复制代码
    a = torch.tensor([[1, 2], [3, 4]])  # shape (2, 2)
    b = torch.tensor([[5, 6]])           # shape (1, 2)
    
    # 沿 dim=0 拼接(行方向)
    c = torch.cat([a, b], dim=0)
    print(c)
    # tensor([[1, 2],
    #         [3, 4],
    #         [5, 6]])  # shape (3, 2)
  • 特点

    • 拼接后的张量在指定维度上的大小是输入张量该维度大小的总和。

    • 其他维度必须完全一致。

2. torch.stack

  • 作用 :沿新维度 堆叠多个张量,创建新维度

  • 输入要求 :所有张量的形状必须完全相同

  • 语法

    python 复制代码
    torch.stack(tensors, dim=0)  # dim 指定新维度的位置
  • 示例

    python 复制代码
    a = torch.tensor([1, 2])  # shape (2,)
    b = torch.tensor([3, 4])  # shape (2,)
    
    # 沿新维度 dim=0 堆叠
    c = torch.stack([a, b], dim=0)
    print(c)
    # tensor([[1, 2],
    #         [3, 4]])  # shape (2, 2)
    
    # 沿新维度 dim=1 堆叠
    d = torch.stack([a, b], dim=1)
    print(d)
    # tensor([[1, 3],
    #         [2, 4]])  # shape (2, 2)
  • 特点

    • 输出张量比输入张量多一个维度

    • 适用于将多个相同形状的张量合并为批次(如 batch_size 维度)。

3. 关键区别总结

4. 直观对比示例

假设有两个张量:

python 复制代码
x = torch.tensor([1, 2])  # shape (2,)
y = torch.tensor([3, 4])  # shape (2,)

torch.cat 结果

python 复制代码
torch.cat([x, y], dim=0)  # tensor([1, 2, 3, 4]), shape (4,)

torch.stack 结果

python 复制代码
torch.stack([x, y], dim=0)  # tensor([[1, 2], [3, 4]]), shape (2, 2)

5. 如何选择?

  • torch.cat 当需要扩展现有维度(如拼接多个特征图)。

  • torch.stack 当需要创建新维度(如构建批次数据或堆叠不同模型的输出)

通过理解两者的维度变化逻辑,可以避免常见的形状错误(如 size mismatch)。

相关推荐
sight-ai1 小时前
超越基础:SightAI 智能路由与多模型选择实战
人工智能·开源·大模型·api
OpenVINO 中文社区1 小时前
端侧AI创新挑战赛正式启动
人工智能
取酒鱼食--【余九】1 小时前
深度学习经典网络解析:ResNet
网络·人工智能·深度学习·神经网络·resnet·卷积神经网络·残差神经网络
搞科研的小刘选手1 小时前
【通信&网络安全主题】第六届计算机通信与网络安全国际学术会议(CCNS 2025)
大数据·人工智能·网络安全·vr·通信工程·网络技术·计算机工程
QT 小鲜肉2 小时前
【个人成长笔记】在Ubuntu中的Linux系统安装 anaconda 及其相关终端命令行
linux·笔记·深度学习·学习·ubuntu·学习方法
qq_314810812 小时前
三重变革:数字革命、地缘重构与生态危机
人工智能
武子康2 小时前
AI-调查研究-104-具身智能 从模型训练到机器人部署:ONNX、TensorRT、Triton全流程推理优化详解
人工智能·gpt·ai·性能优化·机器人·tensorflow·具身智能
灵犀物润2 小时前
机器宠物建模的第一步:基础形体搭建(Blocking)
人工智能·机器人·宠物
人机与认知实验室2 小时前
触摸大语言模型的边界
人工智能·深度学习·机器学习·语言模型·自然语言处理
神的孩子都在歌唱2 小时前
PostgreSQL 向量检索方式(pgvector)
数据库·人工智能·postgresql