torch.cat和torch.stack的区别

torch.cattorch.stack 是 PyTorch 中用于组合张量的两个常用函数,它们的核心区别在于输入张量的维度和输出张量的维度变化。以下是详细对比:

1. torch.cat (Concatenate)

  • 作用 :沿现有维度 拼接多个张量,不创建新维度

  • 输入要求 :所有张量的形状必须除拼接维度外完全相同

  • 语法

    python 复制代码
    torch.cat(tensors, dim=0)  # dim 指定拼接的维度
  • 示例

    python 复制代码
    a = torch.tensor([[1, 2], [3, 4]])  # shape (2, 2)
    b = torch.tensor([[5, 6]])           # shape (1, 2)
    
    # 沿 dim=0 拼接(行方向)
    c = torch.cat([a, b], dim=0)
    print(c)
    # tensor([[1, 2],
    #         [3, 4],
    #         [5, 6]])  # shape (3, 2)
  • 特点

    • 拼接后的张量在指定维度上的大小是输入张量该维度大小的总和。

    • 其他维度必须完全一致。

2. torch.stack

  • 作用 :沿新维度 堆叠多个张量,创建新维度

  • 输入要求 :所有张量的形状必须完全相同

  • 语法

    python 复制代码
    torch.stack(tensors, dim=0)  # dim 指定新维度的位置
  • 示例

    python 复制代码
    a = torch.tensor([1, 2])  # shape (2,)
    b = torch.tensor([3, 4])  # shape (2,)
    
    # 沿新维度 dim=0 堆叠
    c = torch.stack([a, b], dim=0)
    print(c)
    # tensor([[1, 2],
    #         [3, 4]])  # shape (2, 2)
    
    # 沿新维度 dim=1 堆叠
    d = torch.stack([a, b], dim=1)
    print(d)
    # tensor([[1, 3],
    #         [2, 4]])  # shape (2, 2)
  • 特点

    • 输出张量比输入张量多一个维度

    • 适用于将多个相同形状的张量合并为批次(如 batch_size 维度)。

3. 关键区别总结

4. 直观对比示例

假设有两个张量:

python 复制代码
x = torch.tensor([1, 2])  # shape (2,)
y = torch.tensor([3, 4])  # shape (2,)

torch.cat 结果

python 复制代码
torch.cat([x, y], dim=0)  # tensor([1, 2, 3, 4]), shape (4,)

torch.stack 结果

python 复制代码
torch.stack([x, y], dim=0)  # tensor([[1, 2], [3, 4]]), shape (2, 2)

5. 如何选择?

  • torch.cat 当需要扩展现有维度(如拼接多个特征图)。

  • torch.stack 当需要创建新维度(如构建批次数据或堆叠不同模型的输出)

通过理解两者的维度变化逻辑,可以避免常见的形状错误(如 size mismatch)。

相关推荐
仗剑_走天涯1 小时前
基于pytorch.nn模块实现线性模型
人工智能·pytorch·python·深度学习
cnbestec2 小时前
协作机器人UR7e与UR12e:轻量化设计与高负载能力助力“小而美”智造升级
人工智能·机器人·协作机器人·ur协作机器人·ur7e·ur12e
zskj_zhyl2 小时前
毫米波雷达守护银发安全:七彩喜跌倒检测仪重构居家养老防线
人工智能·安全·重构
gaosushexiangji3 小时前
利用sCMOS科学相机测量激光散射强度
大数据·人工智能·数码相机·计算机视觉
ai小鬼头4 小时前
AIStarter新版重磅来袭!永久订阅限时福利抢先看
人工智能·开源·github
说私域5 小时前
从品牌附庸到自我表达:定制开发开源AI智能名片S2B2C商城小程序赋能下的营销变革
人工智能·小程序
飞哥数智坊5 小时前
新版定价不够用,Cursor如何退回旧版定价
人工智能·cursor
12点一刻6 小时前
搭建自动化工作流:探寻解放双手的有效方案(2)
运维·人工智能·自动化·deepseek
未来之窗软件服务6 小时前
东方仙盟AI数据中间件使用教程:开启数据交互与自动化应用新时代——仙盟创梦IDE
运维·人工智能·自动化·仙盟创梦ide·东方仙盟·阿雪技术观
JNU freshman6 小时前
计算机视觉速成 之 概述
人工智能·计算机视觉