面试篇 - 位置编码

位置编码介绍

  1. RNN与Transformer的对比

    • RNN(循环神经网络)的结构包含了序列的时序信息,这意味着它能够利用序列中元素的顺序来理解句子的含义。

    • Transformer模型在设计时完全去掉了序列的时序信息,这可能导致模型无法区分不同顺序的句子。例如,"他欠我100万"和"我欠他100万"在没有时序信息的情况下,意思完全相反。

  2. 位置编码的作用

    • 为了解决时序信息丢失的问题,Transformer的作者引入了位置编码(Positional Encoding)。

    • 位置编码为每个token提供了位置信息,使得模型能够区分不同位置的token。

  3. 位置信息的类型

    • 绝对位置信息:直接表示token在序列中的位置,如a1是第一个token,a2是第二个token等。

    • 相对位置信息:表示token之间的相对位置,如a2在a1的后面一位,a4在a2的后面两位等。

    • 不同位置间的距离:表示不同位置token之间的距离,如a1和a3差两个位置,a1和a4差三个位置等。

  4. 位置编码的要求

    • 提供位置信息:位置编码为模型提供了每个token在序列中的位置信息,这对于理解序列的顺序至关重要。

    • 保持一致性:在不同序列长度的情况下,位置编码能够保持不同序列中token的相对位置/距离一致。

    • 处理长序列:位置编码可以表示模型在训练过程中从未见过的句子长度,即长度外推问题。

位置编码的实现

这种编码方式能够为每个位置生成一个唯一的向量,并且这些向量在不同位置之间是可区分的,从而为模型提供了必要的位置信息。

位置编码的数学原理

  1. 需要一个有界且连续的函数

    • 位置编码需要一个函数,该函数对于不同的时间步(或位置)t 能够生成不同的值,同时这些值需要是有界的(即在某个范围内)。

    • 正弦函数(sin)是一个满足这些条件的简单函数。

  2. 频率设置

    • 为了确保不同位置的编码尽可能不重复,频率 wi​ 被设置得非常低。

    • 这样设计可以减少不同位置编码重合的可能性。

  3. 位置编码公式

代码实现

在实际的代码实现中,位置编码通常如下所示:

复制代码
import torch
import torch.nn as nn
import math

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, max_len=5000):
        super(PositionalEncoding, self).__init__()
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose(0, 1)
        self.register_buffer('pe', pe)

    def forward(self, x):
        x = x + self.pe[:x.size(0), :]
        return x
相关推荐
工藤学编程20 小时前
零基础学AI大模型之LangChain智能体之initialize_agent开发实战
人工智能·langchain
king王一帅21 小时前
Incremark Solid 版本上线:Vue/React/Svelte/Solid 四大框架,统一体验
前端·javascript·人工智能
泰迪智能科技1 天前
分享|职业技术培训|数字技术应用工程师快问快答
人工智能
Dxy12393102161 天前
如何给AI提问:让机器高效理解你的需求
人工智能
少林码僧1 天前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)1 天前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
没学上了1 天前
CNNMNIST
人工智能·深度学习
宝贝儿好1 天前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人
智驱力人工智能1 天前
守护流动的规则 基于视觉分析的穿越导流线区检测技术工程实践 交通路口导流区穿越实时预警技术 智慧交通部署指南
人工智能·opencv·安全·目标检测·计算机视觉·cnn·边缘计算
AI产品备案1 天前
生成式人工智能大模型备案制度与发展要求
人工智能·深度学习·大模型备案·算法备案·大模型登记