体系结构论文(六十七):A Machine-Learning-Guided Framework for Fault-Tolerant DNNs

A Machine-Learning-Guided Framework for Fault-Tolerant DNNs DATE 2024

研究动机

深度神经网络(DNN)虽然对某些扰动具有天然的容错性,但在面对硬件故障 (如软错误、老化、环境干扰等)时,仍会出现输出错误。而常见的容错手段如**三模冗余(TMR)错误更正码(ECC)**成本过高,特别是在面对大型神经网络时。因此,该研究旨在:

  • 识别 DNN 中对故障更敏感的关键参数;

  • 在保障准确性的同时,以更低成本进行选择性加固。

提出的方法框架

Step I:统计性 Fault Injection(FI)
  • 对 DNN 各层的权重进行随机比特翻转注入;

  • 用少量注入实现高置信度的关键性评估;

  • 作为后续机器学习训练的样本来源。

Step II:关键性预测(ML-based Criticality Prediction)
  • 使用**随机森林(RF)均衡随机森林(BRF)**等分类模型;

  • 输入特征包括比特位位置、符号、所在层等;

  • 预测未注入部分的参数或比特是否"关键";

  • 用户可根据所能容忍的准确率下降(如0.5%~10%)定义"关键"的标准。

Step III:选择性加固(Selective Hardening)
  • 仅对预测为"关键"的参数使用 Hamming ECC;

  • 非关键部分不做保护,以此减少内存与硬件开销;

  • 引入一个"关键性签名表"记录每个参数是否需要保护,并对其自身进行加固防止篡改。

所提方法的整体框架

论文提出的机器学习引导容错框架分为三个步骤:

Step I:统计性故障注入(Statistical Fault Injection, FI)

  • 目的:通过模拟比特翻转来评估神经网络权重的脆弱性;

  • 策略:不是进行全面注入,而是只对部分参数位注入,通过统计手段(控制置信区间与误差范围)来评估;

  • 实验设置

    • 故障类型:单粒子翻转(SEU,非破坏性软错误);

    • 目标:LeNet-5 与 ResNet-18 的权重参数;

    • 注入次数:LeNet-5 共注入约 29 万次 ,ResNet-18 共注入 210 万次

    • 容忍误差:99%置信度,误差 <1%。

【Table I 】Fault Injection Results

该表展示了注入后的参数按"容忍精度下降"所划分的"可接受"(Acceptable)和"关键"(Critical)比例:

模型/编码 FP32 精度下降0.5% FxP32 精度下降0.5% FxP16 精度下降0.5% FxP8 精度下降0.5%
LeNet-5 1.77% 的位是关键 0.79% 0.29% 0.30%
ResNet-18 8.44% 的位是关键 4.62% 4.44% 4.22%

📌 结论

  • 固定点格式(FxP)的容错能力 远优于浮点格式(FP32)

  • 容错能力提升的原因是:FxP 的数值范围更窄,因此位翻转不容易产生"异常值";

  • 容忍精度下降越多,关键位所占比例越少。

Step II:机器学习预测参数关键性(ML-based Prediction)

  • 训练数据:来自 Step I 中的 FI 结果;

  • 目标:预测所有参数(包括未注入的)中哪些是"关键的";

  • 输入特征

    • 被注入的位在权重中的位置;

    • 位的符号(正负);

    • 所属网络层;

    • 受影响的输出特征图与滤波器通道;

  • 使用模型

    • 随机森林(Random Forest, RF)

    • 平衡随机森林(Balanced RF, BRF),应对类别不平衡问题;

  • 评估方式:10折交叉验证,训练集/测试集比例为70%/30%;

  • 输出指标

    • ROC AUC:越接近1表示分类越准确;

    • 四类预测情况:TP、FP、FN、TN。

【Table II 】ML-based Fault Prediction Model

LeNet-5 / FP32 / 容忍精度下降0.5% 为例:

| 真正关键 | 预测正确 (TP) = 1.73% | 被误判为可接受 (FN) = 0.03% | | 真正可接受 | 预测正确 (TN) = 98.16% | 被误判为关键 (FP) = 0.06% |

结论

  • ROC AUC 均 > 0.99,说明整体预测非常准确;

  • RF 对类别不平衡敏感,会高估"可接受";

  • BRF 减少了误判为"可接受"的关键位,但也会误把一些"可接受"当作"关键"保护,增加了额外成本(但不影响功能,仅增加硬件资源消耗);

  • 用户可在鲁棒性与代价之间权衡选择。

Step III:选择性加固(Selective Hardening)

  • 原则:只对预测为关键的参数加 ECC;

  • ECC 类型:Hamming ECC(单比特纠错);

  • 存储设计

    • 引入"关键性签名表":每个参数是否需要加固,用一个比特记录;

    • 该签名表也用 ECC 加固,以防自身出错。

【Table III 】Memory Overhead Comparison
编码 全保护(AP) 仅保护关键参数(CP) 签名区(Sign.) 节省开销(Gain)
LeNet-5 FP32 18.75% 9.926% 3.125% 节省约 30.4%
LeNet-5 FxP32 18.75% 0.740% 3.125% 节省约 79.4%
ResNet-18 FxP8 50.00% 2.476% 12.5% 节省约 70.0%

结论

  • 选择性加固策略在 固定点格式中尤为有效,节省内存开销显著;

  • 即使考虑"签名表"的存储成本,整体依旧有极大压缩优势。

相关推荐
Mapmost26 分钟前
【数据可视化艺术·实战篇】视频AI+人流可视化:如何让数据“动”起来?
人工智能·信息可视化·实时音视频·数字孪生·demo
_一条咸鱼_1 小时前
AI 大模型的 MCP 原理
人工智能·深度学习·面试
_一条咸鱼_1 小时前
AI 大模型 Function Calling 原理
人工智能·深度学习·面试
寰宇视讯1 小时前
金山科技在第91届中国国际医疗器械博览会CMEF 首发新品 展现智慧装备+AI
大数据·人工智能·科技
訾博ZiBo1 小时前
AI日报 - 2025年04月17日
人工智能
耿雨飞2 小时前
二、The Power of LLM Function Calling
人工智能·大模型
金能电力2 小时前
金能电力领跑京东工业安全工器具赛道 2025年首季度数据诠释“头部效应”
人工智能·安全·金能电力安全工器具
WSSWWWSSW2 小时前
神经网络如何表示数据
人工智能·深度学习·神经网络
多吃轻食2 小时前
Jieba分词的原理及应用(三)
人工智能·深度学习·自然语言处理·中文分词·分词·jieba·隐马尔可夫
dragon_perfect3 小时前
ubuntu22.04上设定Service程序自启动,自动运行Conda环境下的Python脚本(亲测)
开发语言·人工智能·python·conda