功能说明
参考博文:https://blog.csdn.net/WZZ18191171661/article/details/99174861
在处理现实生活中的图像处理问题时,我们经常会遇到一种情况-即我们将要处理的目标的位置是斜的,我们需要使用仿射变换进行矫正。当你做了很多现实场景中的案例之后,你就会发现这是一个非常通用的模块,因而本篇博客针对这个问题进行了详细的论述,具体的案例如下图所示,左边表示的是原始的输入图片,该图片中的目标是斜放的,我们要做的任务就是将其矫正过来。
代码实现
python
import cv2
import numpy as np
import time
from pyzbar.pyzbar import decode
def order_points(pts):
# 初始化坐标点
rect = np.zeros((4, 2), dtype = "float32")
# 获取左上角和右下角坐标点
s = pts.sum(axis = 1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
# 分别计算左上角和右下角的离散差值
diff = np.diff(pts, axis = 1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
return rect
def four_point_transform(image, pts):
rect = order_points(pts)
(tl, tr, br, bl) = rect
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
maxWidth = max(int(widthA), int(widthB))
# 计算新图片的高度值,选取垂直差值的最大值
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
maxHeight = max(int(heightA), int(heightB))
# # 构建新图片的4个坐标点
dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype = "float32")
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
return warped
if __name__ == '__main__':
# img = cv2.imread("bar.jpg")
img_path = '../picture_2025-04-09_14-56-03-518_ORI.png'
img=cv2.imread(img_path)
# 将图像转换为灰度图
gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
box_small= [[1672,414],[2424,400],[2424,472],[1672,486]]
print(type(box_small))
box = np.array(box_small).astype(np.int32)
for i in range(100):
start_time = time.perf_counter()
warped=four_point_transform(img, box)
end_time = time.perf_counter()
elapsed_time = (end_time - start_time)*1000
print("从收图像到检测出结果回传结果用的时间!!!!!!!!!!: {} ms".format(elapsed_time))
# cv2.polylines(img, [box], True, (0, 255, 0), 2)
# print("绘制完成")
# cv2.imwrite('E:/code/1.png',img)
# cv2.imwrite('E:/code/2.png',warped)