神经网络如何表示数据

神经网络是如何工作的?这是一个让新手和专家都感到困惑的问题。麻省理工学院计算机科学和人工智能实验室(CSAIL)的一个团队表示,理解这些表示,以及它们如何为神经网络从数据中学习的方式提供信息,对于提高深度学习模型的可解释性、效率和普遍性至关重要。

有了这个想法,CSAIL研究人员开发了一个新的框架来理解神经网络中的表征是如何形成的。他们的规范表征假设(CRH)假设,在训练期间,神经网络固有地对齐每一层内的潜在表征、权重和神经元梯度。这种对齐意味着神经网络根据偏离CRH的程度和模式自然地学习紧凑的表征。资深作者托马索·波焦说,通过理解和利用这种对齐,工程师可以潜在地设计出更高效、更容易理解的网络。

该团队相应的多项式对齐假设(PAH)假设,当CRH被破坏时。不同的阶段出现,其中表示、梯度和权重成为彼此的多项式函数。Poggio说,CRH和PAH为神经崩溃和神经特征ansatz(NFA)等关键深度学习现象提供了一个潜在的统一理论。

关于该项目的一篇新的CSAIL论文提供了各种设置的实验结果,以支持CRH和PAH在包括图像分类和自监督学习在内的任务上。CRH建议手动将噪声注入神经元梯度以设计模型表示中的特定结构的可能性。Poggio说,未来的一个关键方向是了解导致每个阶段的条件,以及这些阶段如何影响模型的行为和性能。

"这篇论文为理解通过CRH和PAH形成神经网络中的表征提供了一个新的视角,"波吉奥说。"这为统一现有观察和指导深度学习的未来研究提供了一个框架.

CSAIL博士后、合著者刘子银表示,CRH可以解释神经科学中的某些现象,因为它暗示神经网络倾向于学习正交化表示,这在最近的大脑研究中已经观察到。它还可能具有算法含义:如果表示与梯度一致,就有可能手动将噪声注入神经元梯度,以设计模型表示中的特定结构。

紫音和波焦与艾萨克·庄教授和前博士后托默·加兰蒂共同撰写了这篇论文,托默·加兰蒂现在是德克萨斯A&M大学的计算机科学助理教授。他们将于本月晚些时候在新加坡举行的国际学习表示会议(ICLR)上发表这篇论文。

相关推荐
一水鉴天4 小时前
整体设计 定稿 之1 devOps 中台的 结论性表述(豆包助手)
服务器·数据库·人工智能
XUA4 小时前
如何在服务器上使用Codex
人工智能
咚咚王者4 小时前
人工智能之数据分析 Matplotlib:第三章 基本属性
人工智能·数据分析·matplotlib
Mintopia4 小时前
开源AIGC模型对Web技术生态的影响与机遇 🌐✨
人工智能·aigc·敏捷开发
codetown4 小时前
openai-go通过SOCKS5代理调用外网大模型
人工智能·后端
世优科技虚拟人5 小时前
2026数字展厅设计核心关键,AI数字人交互大屏加速智慧展厅升级改造
人工智能·大模型·数字人·智慧展厅·展厅设计
艾莉丝努力练剑5 小时前
【Python基础:语法第一课】Python 基础语法详解:变量、类型、动态特性与运算符实战,构建完整的编程基础认知体系
大数据·人工智能·爬虫·python·pycharm·编辑器
MobotStone5 小时前
数字沟通之道
人工智能·算法
Together_CZ5 小时前
Cambrian-S: Towards Spatial Supersensing in Video——迈向视频中的空间超感知
人工智能·机器学习·音视频·spatial·cambrian-s·迈向视频中的空间超感知·supersensing
caiyueloveclamp6 小时前
【功能介绍05】ChatPPT好不好用?如何用?用户操作手册来啦!——【AI辅写+分享篇】
人工智能·powerpoint·ai生成ppt·aippt·免费aippt