神经网络如何表示数据

神经网络是如何工作的?这是一个让新手和专家都感到困惑的问题。麻省理工学院计算机科学和人工智能实验室(CSAIL)的一个团队表示,理解这些表示,以及它们如何为神经网络从数据中学习的方式提供信息,对于提高深度学习模型的可解释性、效率和普遍性至关重要。

有了这个想法,CSAIL研究人员开发了一个新的框架来理解神经网络中的表征是如何形成的。他们的规范表征假设(CRH)假设,在训练期间,神经网络固有地对齐每一层内的潜在表征、权重和神经元梯度。这种对齐意味着神经网络根据偏离CRH的程度和模式自然地学习紧凑的表征。资深作者托马索·波焦说,通过理解和利用这种对齐,工程师可以潜在地设计出更高效、更容易理解的网络。

该团队相应的多项式对齐假设(PAH)假设,当CRH被破坏时。不同的阶段出现,其中表示、梯度和权重成为彼此的多项式函数。Poggio说,CRH和PAH为神经崩溃和神经特征ansatz(NFA)等关键深度学习现象提供了一个潜在的统一理论。

关于该项目的一篇新的CSAIL论文提供了各种设置的实验结果,以支持CRH和PAH在包括图像分类和自监督学习在内的任务上。CRH建议手动将噪声注入神经元梯度以设计模型表示中的特定结构的可能性。Poggio说,未来的一个关键方向是了解导致每个阶段的条件,以及这些阶段如何影响模型的行为和性能。

"这篇论文为理解通过CRH和PAH形成神经网络中的表征提供了一个新的视角,"波吉奥说。"这为统一现有观察和指导深度学习的未来研究提供了一个框架.

CSAIL博士后、合著者刘子银表示,CRH可以解释神经科学中的某些现象,因为它暗示神经网络倾向于学习正交化表示,这在最近的大脑研究中已经观察到。它还可能具有算法含义:如果表示与梯度一致,就有可能手动将噪声注入神经元梯度,以设计模型表示中的特定结构。

紫音和波焦与艾萨克·庄教授和前博士后托默·加兰蒂共同撰写了这篇论文,托默·加兰蒂现在是德克萨斯A&M大学的计算机科学助理教授。他们将于本月晚些时候在新加坡举行的国际学习表示会议(ICLR)上发表这篇论文。

相关推荐
szxinmai主板定制专家21 小时前
【NI测试方案】基于ARM+FPGA的整车仿真与电池标定
arm开发·人工智能·yolo·fpga开发
ygyqinghuan1 天前
读懂目标检测
人工智能·目标检测·目标跟踪
华东数交1 天前
企业与国有数据资产:入表全流程管理及资产化闭环理论解析
大数据·人工智能
newxtc1 天前
【昆明市不动产登记中心-注册安全分析报告】
人工智能·安全
techdashen1 天前
圆桌讨论:Coding Agent or AI IDE 的现状和未来发展
ide·人工智能
CV实验室1 天前
TIP 2025 | 哈工大&哈佛等提出 TripleMixer:攻克雨雪雾干扰的3D点云去噪网络!
人工智能·计算机视觉·3d·论文
余俊晖1 天前
一套针对金融领域多模态问答的自适应多层级RAG框架-VeritasFi
人工智能·金融·rag
码农阿树1 天前
视频解析转换耗时—OpenCV优化摸索路
人工智能·opencv·音视频
伏小白白白1 天前
【论文精度-2】求解车辆路径问题的神经组合优化算法:综合展望(Yubin Xiao,2025)
人工智能·算法·机器学习
应用市场1 天前
OpenCV编程入门:从零开始的计算机视觉之旅
人工智能·opencv·计算机视觉