spark-SQL数据加载和保存

数据加载与保存

通用方式:

通过 spark.read.load 和 df.write.save 实现数据加载与保存。可利用 format 指定数据格式,如 csv 、 jdbc 等; option 用于设置特定参数,像 jdbc 格式下的数据库连接信息; load 和 save 则分别指定数据路径。保存时还能使用 SaveMode 包含 ErrorIfExists 、 Append 、 Overwrite 、 Ignore 等模式 。

Parquet:

作为默认数据源,Parquet是列式存储格式,适合存储嵌套数据。加载和保存数据时,若为Parquet文件,无需指定 format ,按默认方式操作即可。

JSON:

Spark SQL可自动推测JSON数据集结构,加载为 Dataset[Row] 。但要求JSON文件每行是一个JSON串,通过 spark.read.json() 加载 。

CSV:

读取CSV文件时,可配置列表信息,如设置分隔符、推断数据类型、指定表头,使用 format("csv") 结合 option 设置相关参数。

- MySQL:

借助JDBC,Spark SQL能从MySQL读取数据创建 DataFrame ,计算后也可写回。操作前需导入 mysql-connector-java 依赖,按特定语法编写代码实现数据读写。

代码案例

导入依赖

Spark-SQL连接Hive

内嵌Hive:

使用Spark内嵌Hive无需额外配置,可直接使用,但实际生产中较少采用。

外部Hive:

在spark-shell中连接外部Hive,需将 hive-site.xml 拷贝到 conf/ 目录并修改连接地址,把MySQL驱动复制到 jars/ 目录,拷贝 core-site.xml 和 hdfs-site.xml 到 conf/ 目录,最后重启 spark-shell 。- Spark beeline:Spark Thrift Server兼容HiveServer2,部署后可用beeline访问。连接步骤与连接外部Hive类似,需配置相关文件并启动Thrift Server,再用 beeline -u jdbc:hive2://node01:10000 -n root 连接 。- Spark-SQL CLI:在Spark目录下,将MySQL驱动放入 jars/ , hive-site.xml 放入 conf/ ,运行 bin/ 目录下的 spark-sql.cmd 即可启动,能直接执行SQL语句。

代码操作Hive:

先导入 spark-hive_2.12 和 hive-exec依赖,将hive-site.xml拷贝到resources目录中,在代码中启用hive支持

代码案例

导入依赖

相关推荐
华子w90892585916 小时前
基于 Python Django 和 Spark 的电力能耗数据分析系统设计与实现7000字论文实现
python·spark·django
小新学习屋20 小时前
Spark从入门到熟悉(篇三)
大数据·分布式·spark
Aurora_NeAr2 天前
Spark SQL架构及高级用法
大数据·后端·spark
百度Geek说3 天前
搜索数据建设系列之数据架构重构
数据仓库·重构·架构·spark·dubbo
大数据CLUB3 天前
基于spark的航班价格分析预测及可视化
大数据·hadoop·分布式·数据分析·spark·数据可视化
小新学习屋3 天前
Spark从入门到熟悉(篇一)
大数据·分布式·spark
Cachel wood12 天前
Spark教程6:Spark 底层执行原理详解
大数据·数据库·分布式·计算机网络·spark
大数据CLUB13 天前
基于pyspark的北京历史天气数据分析及可视化_离线
大数据·hadoop·数据挖掘·数据分析·spark
Cachel wood13 天前
Spark教程1:Spark基础介绍
大数据·数据库·数据仓库·分布式·计算机网络·spark