pytorch自动求梯度autograd

autograd是pytorch构建神经网络的核心。

在 PyTorch 中,结合以下代码例子,当你对一个张量 x 设置 requires_grad=True 时,你实际上是告诉 PyTorch 需要跟踪所有对这个张量的操作以便未来可以计算梯度。当你调用 out.backward() 时,PyTorch 会自动计算关于 out 的梯度,并逆向传播回 x

在以下代码中:

python 复制代码
x = torch.ones(2,2)
print(x)
x.requires_grad=True
print(x)
y = x + 2
z = y*y*3
out = z.mean()
print(out)
out.backward()
print(x.grad)
print(y.grad)  # 这一行会报错,因为 y 不需要梯度,y为非叶子张量

y 是由 x 通过一个简单的加法操作得到的。由于 y 本身并没有设置 requires_grad=True,PyTorch 没有跟踪 y 的操作历史,因此无法计算 y 关于 out 的梯度。

如果你想要计算 y 的梯度,你需要在创建 y 之前也设置 requires_grad=True。但是,通常情况下,我们不需要对中间变量求梯度,我们只需要对最终输出的梯度感兴趣,然后通过反向传播计算出所有需要的梯度。

如果你确实需要对 y 求梯度,可以这样做:

python 复制代码
x = torch.ones(2,2, requires_grad=True)
y = x + 2
z = y*y*3
out = z.mean()
out.backward()
print(x.grad)  # 计算 x 的梯度
print(y.grad)  # 现在可以计算 y 的梯度了

在这个修改后的代码中,xy 都设置了 requires_grad=True,因此 PyTorch 会跟踪它们所有的操作,你可以计算 y 关于 out 的梯度。但是请注意,通常情况下,我们只需要计算最终输出(在这个例子中是 out)关于输入变量(在这个例子中是 x)的梯度。

相关推荐
奋斗者1号41 分钟前
机器学习之决策树模型:从基础概念到条件类型详解
人工智能·决策树·机器学习
kovlistudio3 小时前
机器学习第三讲:监督学习 → 带答案的学习册,如预测房价时需要历史价格数据
人工智能·机器学习
奋斗者1号5 小时前
Docker 部署 - Crawl4AI 文档 (v0.5.x)
人工智能·爬虫·机器学习
NLP小讲堂6 小时前
LLaMA Factory 深度调参
人工智能·机器学习
Alessio Micheli6 小时前
基于几何布朗运动的股价预测模型构建与分析
线性代数·机器学习·概率论
vlln6 小时前
适应性神经树:当深度学习遇上决策树的“生长法则”
人工智能·深度学习·算法·决策树·机器学习
奋斗者1号6 小时前
机器学习之决策树与决策森林:机器学习中的强大工具
人工智能·决策树·机器学习
xiangzhihong87 小时前
LegoGPT,卡内基梅隆大学推出的乐高积木设计模型
机器学习
小L爱科研7 小时前
4.7/Q1,GBD数据库最新文章解读
数据库·机器学习·数据分析·回归·健康医疗
zkmall7 小时前
推荐算法工程化:ZKmall模板商城的B2C 商城的用户分层推荐策略
算法·机器学习·推荐算法