pytorch自动求梯度autograd

autograd是pytorch构建神经网络的核心。

在 PyTorch 中,结合以下代码例子,当你对一个张量 x 设置 requires_grad=True 时,你实际上是告诉 PyTorch 需要跟踪所有对这个张量的操作以便未来可以计算梯度。当你调用 out.backward() 时,PyTorch 会自动计算关于 out 的梯度,并逆向传播回 x

在以下代码中:

python 复制代码
x = torch.ones(2,2)
print(x)
x.requires_grad=True
print(x)
y = x + 2
z = y*y*3
out = z.mean()
print(out)
out.backward()
print(x.grad)
print(y.grad)  # 这一行会报错,因为 y 不需要梯度,y为非叶子张量

y 是由 x 通过一个简单的加法操作得到的。由于 y 本身并没有设置 requires_grad=True,PyTorch 没有跟踪 y 的操作历史,因此无法计算 y 关于 out 的梯度。

如果你想要计算 y 的梯度,你需要在创建 y 之前也设置 requires_grad=True。但是,通常情况下,我们不需要对中间变量求梯度,我们只需要对最终输出的梯度感兴趣,然后通过反向传播计算出所有需要的梯度。

如果你确实需要对 y 求梯度,可以这样做:

python 复制代码
x = torch.ones(2,2, requires_grad=True)
y = x + 2
z = y*y*3
out = z.mean()
out.backward()
print(x.grad)  # 计算 x 的梯度
print(y.grad)  # 现在可以计算 y 的梯度了

在这个修改后的代码中,xy 都设置了 requires_grad=True,因此 PyTorch 会跟踪它们所有的操作,你可以计算 y 关于 out 的梯度。但是请注意,通常情况下,我们只需要计算最终输出(在这个例子中是 out)关于输入变量(在这个例子中是 x)的梯度。

相关推荐
Blossom.1182 小时前
移动端部署噩梦终结者:动态稀疏视觉Transformer的量化实战
java·人工智能·python·深度学习·算法·机器学习·transformer
月下倩影时3 小时前
视觉进阶篇——机器学习训练过程(手写数字识别,量大管饱需要耐心)
人工智能·学习·机器学习
生信大表哥7 小时前
贝叶斯共识聚类(BCC)
机器学习·数据挖掘·聚类
Cathy Bryant11 小时前
信息论(五):联合熵与条件熵
人工智能·笔记·机器学习·数学建模·概率论
aitoolhub18 小时前
重塑机器人未来:空间智能驱动产业智能化升级
大数据·人工智能·深度学习·机器学习·机器人·aigc
淬炼之火18 小时前
阅读:基于深度学习的红外可见光图像融合综述
图像处理·深度学习·机器学习·计算机视觉·特征融合·红外图像识别
极客BIM工作室18 小时前
思维链(CoT)的本质:无需架构调整,仅靠提示工程激活大模型推理能力
人工智能·机器学习·架构
三条猫19 小时前
AI 大模型如何给 CAD 3D 模型“建立语义”?
人工智能·机器学习·3d·ai·大模型·cad
pen-ai1 天前
【高级机器学习】 10. 领域适应与迁移学习
人工智能·机器学习·迁移学习
CV实验室1 天前
AAAI 2026 Oral 之江实验室等提出MoEGCL:在6大基准数据集上刷新SOTA,聚类准确率最高提升超8%!
人工智能·机器学习·计算机视觉·数据挖掘·论文·聚类