pytorch自动求梯度autograd

autograd是pytorch构建神经网络的核心。

在 PyTorch 中,结合以下代码例子,当你对一个张量 x 设置 requires_grad=True 时,你实际上是告诉 PyTorch 需要跟踪所有对这个张量的操作以便未来可以计算梯度。当你调用 out.backward() 时,PyTorch 会自动计算关于 out 的梯度,并逆向传播回 x

在以下代码中:

python 复制代码
x = torch.ones(2,2)
print(x)
x.requires_grad=True
print(x)
y = x + 2
z = y*y*3
out = z.mean()
print(out)
out.backward()
print(x.grad)
print(y.grad)  # 这一行会报错,因为 y 不需要梯度,y为非叶子张量

y 是由 x 通过一个简单的加法操作得到的。由于 y 本身并没有设置 requires_grad=True,PyTorch 没有跟踪 y 的操作历史,因此无法计算 y 关于 out 的梯度。

如果你想要计算 y 的梯度,你需要在创建 y 之前也设置 requires_grad=True。但是,通常情况下,我们不需要对中间变量求梯度,我们只需要对最终输出的梯度感兴趣,然后通过反向传播计算出所有需要的梯度。

如果你确实需要对 y 求梯度,可以这样做:

python 复制代码
x = torch.ones(2,2, requires_grad=True)
y = x + 2
z = y*y*3
out = z.mean()
out.backward()
print(x.grad)  # 计算 x 的梯度
print(y.grad)  # 现在可以计算 y 的梯度了

在这个修改后的代码中,xy 都设置了 requires_grad=True,因此 PyTorch 会跟踪它们所有的操作,你可以计算 y 关于 out 的梯度。但是请注意,通常情况下,我们只需要计算最终输出(在这个例子中是 out)关于输入变量(在这个例子中是 x)的梯度。

相关推荐
小白狮ww1 小时前
要给 OCR 装个脑子吗?DeepSeek-OCR 2 让文档不再只是扫描
人工智能·深度学习·机器学习·ocr·cpu·gpu·deepseek
dazzle2 小时前
机器学习算法原理与实践-入门(三):使用数学方法实现KNN
人工智能·算法·机器学习
玄同7652 小时前
Python 后端三剑客:FastAPI/Flask/Django 对比与 LLM 开发选型指南
人工智能·python·机器学习·自然语言处理·django·flask·fastapi
B站_计算机毕业设计之家2 小时前
豆瓣电影推荐系统 | Python Django Echarts构建个性化影视推荐平台 大数据 毕业设计源码 (建议收藏)✅
大数据·python·机器学习·django·毕业设计·echarts·推荐算法
啊阿狸不会拉杆3 小时前
《机器学习导论》第 5 章-多元方法
人工智能·python·算法·机器学习·numpy·matplotlib·多元方法
铁蛋AI编程实战3 小时前
MemoryLake 实战:构建超长对话 AI 助手的完整代码教程
人工智能·python·microsoft·机器学习
张较瘦_3 小时前
[论文阅读] AI | 用机器学习给深度学习库“体检”:大幅提升测试效率的新思路
论文阅读·人工智能·机器学习
算法狗23 小时前
大模型面试题:大模型的训练和推理中显存和计算量的情况
人工智能·深度学习·机器学习·语言模型
我材不敲代码4 小时前
机器学习入门 04逻辑回归part2——提高逻辑回归模型的召回率
人工智能·机器学习·逻辑回归