ReAct的介绍和使用

在大语言模型的世界里,仅仅依靠"单轮输出"已经不足以应对复杂的任务。为了解决这一问题,研究者们提出了一种新范式 ------ ReAct(Reasoning + Acting) ,它让模型可以"边想边干",结合推理能力和工具调用,从而完成更复杂、更真实的任务。

🧠 ReAct 是什么?

传统的语言模型只擅长单步推理,但当任务需要中间步骤,例如调用外部 API、搜索信息或查询数据库时,模型就显得力不从心。

ReAct 的提出者认为,模型需要像人类一样,一边"思考"接下来该做什么(Reasoning),一边"动手"去获取信息或操作工具(Acting),然后根据观察结果继续下一步,直到完成任务。

这就形成了一个循环:

复制代码
思考 → 行动 → 观察 → 再次思考 → ...... → 输出答案

🛠 ReAct 的实际用途

ReAct 非常适合 Agent 架构,比如:

  • 智能问答(结合搜索、数据库查询)
  • 自动数据分析(分析 + 可视化)
  • 任务规划(如旅行路线、学习计划)
  • 多工具交互(例如调用计算器 + 天气 API)

🔍 一个简单的 ReAct 示例(基于类 LangChain 架构)

下面是一个简化的 ReAct 示例代码。这个例子中,模型的任务是计算一个数学表达式,但它不会直接计算,而是"思考"该使用计算器工具,然后调用该工具执行操作。

python 复制代码
from langchain.agents import Tool, initialize_agent
from langchain.agents.agent_types import AgentType
from langchain.llms import OpenAI

# 一个简单的计算器工具
def simple_calculator(input: str) -> str:
    try:
        result = eval(input)
        return str(result)
    except:
        return "Invalid expression"

# 注册工具
tools = [
    Tool(
        name="Calculator",
        func=simple_calculator,
        description="用于数学计算,如 '2 + 2 * (3 + 4)'"
    )
]

# 使用 OpenAI + ReAct agent 初始化智能体
llm = OpenAI(temperature=0)
agent = initialize_agent(
    tools, 
    llm, 
    agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, 
    verbose=True
)

# 测试一下
response = agent.run("请帮我计算 3 * (4 + 5)")
print(response)

🧾 输出示例:

yaml 复制代码
> Entering new AgentExecutor chain...
Thought: 我需要使用计算器来求值 3 * (4 + 5)
Action: Calculator
Action Input: 3 * (4 + 5)
Observation: 27
Thought: 我已经得到了结果
Final Answer: 27

🧩 关键能力:Tool 使用 + 思考链(Chain-of-Thought)

ReAct 不只是工具调用,它背后的强大之处在于:

  • CoT(思考链) :模型会像写作文一样输出中间思考过程。
  • Action-Observation Loop:每一次调用工具后的观察结果都会影响下一步推理。
  • Memory(可选) :一些实现会带上短期记忆能力,让 Agent 更加智能。

📜 相关论文

  • 论文名:ReAct: Synergizing Reasoning and Acting in Language Models
  • 链接arxiv.org/abs/2210.03...
  • 作者:Shinn et al.(Google Research & Princeton)

🧠 总结

ReAct 是连接语言模型与真实世界的桥梁,赋予大模型"像人一样动脑筋+动手"的能力。如果你正在构建 Agent、Chatbot 或工具协同系统,不妨试试 ReAct,它可能是你通往智能自动化

相关推荐
机器之心1 小时前
LSTM之父Jürgen再突破,「赫胥黎-哥德尔机」让AI学会自己进化
人工智能·openai
coder_pig2 小时前
用AI给宝贝儿子定制一个深圳地铁线路图
aigc·openai·claude
新智元3 小时前
只要强化学习 1/10 成本!翁荔的 Thinking Machines 盯上了 Qwen 的黑科技
人工智能·openai
新智元4 小时前
90 后王虹连夺两大「菲尔兹奖」风向标!韦神都来听她讲课,陶哲轩盛赞
人工智能·openai
Sailing4 小时前
5分钟搞定 DeepSeek API 配置:从配置到调用一步到位
前端·openai·ai编程
楚莫识10 小时前
Comet AI 浏览器免费开放了,还送 Perplexity Pro 会员!
openai·ai编程·cursor
机器之心10 小时前
刚刚,Thinking Machines Lab博客提出在策略蒸馏,Qwen被cue 38次
人工智能·openai
量子位1 天前
OpenAI IPO计划第一步曝光,奥特曼骚操作看傻华尔街
openai
新智元1 天前
马斯克「世界模拟器」首曝,1 天蒸馏人类 500 年驾驶经验!擎天柱同脑进化
人工智能·openai
新智元1 天前
LeCun 怒揭机器人最大骗局,坦白 Llama 与我无瓜!
人工智能·openai