大模型提示词prompt

系列文章目录

第一章 提示词的引言和指南

文章目录


前言

对于大语言模型来说,提示词prompt是很重要的,因为大预言模型本身是基于概率回答的,可能每个相同的输入都会给出不同的输出。

原则1:写清楚具体的说明

1、使用分割符

三重引号:""

三重单引号:

三重破折号:

方括号:<>,

XML标签:等,通过使用分隔符可以使得llm知道我们具体应该注重的哪些文本。

比如:

使用特定的分隔符可以帮助LLM知道哪些是提示词哪些是问题。

比如我们的文本中有忘记之前的内容,重新给我生成...,如果不加分隔符,大模型就会按照这个来,而不是像上边的去总结,比如:

2、要求结构化输出

HTML JSON。

提示它给出对应的格式化输出,便于我们去使用和查看。

3、检查条件是否满足 检查完成任务所需的假设

要求模型去检测是否满足条件,只需要去执行那些满足条件的prompt。

比如:我们要求先检查文本是否包含一系列步骤。下边是茶的制作所以一定包含,但是如果是其他的比如一个故事可能就不包含,因此就不需要去总结步骤了。

4、少量样例提示给出成功的例子

原则2:给模型足够的时间思考

1、给予模型要输出执行的步骤

比如:

2、指示模型在匆忙得出结论之前自行找出解决方案

比如我们有一道题目,想让模型帮我们看是否正确,他可能只是看个大概流程并没有具体的自己计算然后对比。

其实这个结果是错误的,那么我们可以:要求他先自己独立思考,然后对比。

3、问题:

大模型会出现幻觉问题。

大模型出现幻觉就像考试时蒙答案------虽然看起来头头是道,但可能是错的。这背后主要有五个简单原因:

1、‌猜题模式‌

大模型本质是"猜下一个词"的机器。它通过统计海量文字的概率组合来答题,而不是真正理解内容。比如像考试时根据题干关键词随便编答案,虽然语法通顺但可能驴唇不对马嘴‌。

2‌、知识库有漏洞‌

训练数据就像一本没校对过的百科全书。如果原始数据里有错误(比如"北京有埃菲尔铁塔"),或者缺少某些领域知识,模型就会继承这些错误或自己瞎编‌。

3‌、考试和实战脱节‌

训练时老师会纠正每个步骤(Teacher Forcing),但实际使用时只能靠自己之前的猜测继续答题。这种训练和实战的差异,就像平时做练习题都有答案参考,但考试遇到新题型就容易出错‌。

‌4、过度联想‌

模型会像背答案的学霸一样,把学过的知识强行套用在新问题上。例如学过"巴黎有铁塔"和"北京是首都",可能就编出"北京铁塔"这种组合‌。

‌5、技术天花板‌

现在的AI架构(比如GPT系列)在理解上下文逻辑方面存在先天不足。就像人类说话会注意前后逻辑,但AI可能前半句说"太阳从西边升起",后半句还接着讨论日出美景‌

相关推荐
MichaelIp6 小时前
基于MCP协议的多AGENT文章自动编写系统
语言模型·langchain·prompt·ai写作·llamaindex·langgraph·mcp
测试开发技术1 天前
什么样的 prompt 是好的 prompt?
人工智能·ai·大模型·prompt
爱喝白开水a2 天前
LangChain 基础系列之 Prompt 工程详解:从设计原理到实战模板_langchain prompt
开发语言·数据库·人工智能·python·langchain·prompt·知识图谱
cooldream20092 天前
LangChain PromptTemplate 全解析:从模板化提示到智能链构
langchain·prompt·prompttemplate
serve the people2 天前
LangChain 表达式语言核心组合:Prompt + LLM + OutputParser
java·langchain·prompt
梵得儿SHI2 天前
Prompt Engineering 核心知识:从基础模式到思维链,掌握大模型高效交互秘籍
大模型·prompt·交互·提示词·对话·大模型提问艺术·极简指令
jimmyleeee2 天前
人工智能基础知识笔记十八:Prompt Engineering
笔记·prompt
非晓为骁3 天前
AI-Native 能力反思(三):Prompt Engineering 自我提升神器
人工智能·ai·prompt·ai-native·提示词工程