安装Mamba环境

一、基础环境

Mamba是基于SSM实现的序列数据处理模型,其核心算子包括选择性扫描( Selective scan)等目前只有Linux版本,所以基础环境必须是linux。 我们先来看一下[S6](GitHub - state-spaces/mamba: Mamba SSM architecture)中对基础环境的要求。

这里的pytorch版本不再赘述,需要注意的是cuda版本要求是11.6以上,如果我们设备的全局cuda版本不符合要求,推荐使用conda安装一个cuda runtime: conda install -c nvidia cuda-runtime=11.8,注意runtime无法使用nvcc编译cuda文件,所以只能下载安装编译好的mamba二进制文件。

二、安装causal-conv1d

mamba要求causal-conv1d>=1.4.0,一般来说直接使用pip install causal-conv1d是无法安装的,我们最好手动下载其二进制文件安装。

  1. 首先进入causal-conv1d的[官网](GitHub - Dao-AILab/causal-conv1d: Causal depthwise conv1d in CUDA, with a PyTorch interface);
  2. 找到和自己机器环境(cuda版本、python版本、pytorch版本等)对应的causal-conv1d二进制文件。我的机器环境是:
ini 复制代码
ubuntu 24.04;
cuda 11.8;
python 3.10;
pytorch 2.6.0

所以我选择的二进制文件是:

注意:一般服务器无法翻墙,使用wget url下载速度很慢,可以先在本地机器上挂梯子下载好之后,再传到服务器上。最后只需要执行pip install <文件名>就可以安装成功了。

三、安装mamba_ssm

安装mamba_ssm有两种方式,一个是在github上下载源码,然后pip instal -e .使用开发者模式安装。但是这个过程很慢,而且要求nvcc也符合版本要求。 我们可以直接下载对应版本的编译好的二进制文件,同理安装我的环境我下载的是:

检验mamba是否安装成功

如果causal-conv1d和mamba_ssm都成功安装没有报错,环境配置成功,我们可以检验一下是否配置成功: from mamba_ssm.ops.selective_scan_interface import selective_scan_fn执行这段代码没有报错,并能够点进去查看源码,说明环境配置成功。

相关推荐
HyperAI超神经2 小时前
解决蛋白质构象异质性的原子级建模挑战!David Baker团队PLACER框架解析
人工智能·深度学习·ai·ai4s·蛋白质结构
这张生成的图像能检测吗5 小时前
(论文速读)Fast3R:在一个向前通道中实现1000+图像的3D重建
人工智能·深度学习·计算机视觉·3d重建
出门吃三碗饭8 小时前
Transformer前世今生——使用pytorch实现多头注意力(八)
人工智能·深度学习·transformer
巫婆理发22210 小时前
评估指标+数据不匹配+贝叶斯最优误差(分析方差和偏差)+迁移学习+多任务学习+端到端深度学习
深度学习·学习·迁移学习
tyatyatya11 小时前
对比传统方法和深度学习方法在MATLAB视觉检测中的优缺点
深度学习·matlab·视觉检测
金融小师妹12 小时前
多因子量化模型预警:美元强势因子压制金价失守4000关口,ADP数据能否重构黄金趋势?
人工智能·深度学习·1024程序员节
曼城的天空是蓝色的12 小时前
GroupNet:基于多尺度神经网络的交互推理轨迹预测
深度学习·计算机视觉
B站_计算机毕业设计之家13 小时前
深度血虚:Django水果检测识别系统 CNN卷积神经网络算法 python语言 计算机 大数据✅
python·深度学习·计算机视觉·信息可视化·分类·cnn·django
Francek Chen13 小时前
【自然语言处理】预训练05:全局向量的词嵌入(GloVe)
人工智能·pytorch·深度学习·自然语言处理·glove
悠闲蜗牛�14 小时前
技术融合新纪元:深度学习、大数据与云原生的跨界实践
大数据·深度学习·云原生