安装Mamba环境

一、基础环境

Mamba是基于SSM实现的序列数据处理模型,其核心算子包括选择性扫描( Selective scan)等目前只有Linux版本,所以基础环境必须是linux。 我们先来看一下[S6](GitHub - state-spaces/mamba: Mamba SSM architecture)中对基础环境的要求。

这里的pytorch版本不再赘述,需要注意的是cuda版本要求是11.6以上,如果我们设备的全局cuda版本不符合要求,推荐使用conda安装一个cuda runtime: conda install -c nvidia cuda-runtime=11.8,注意runtime无法使用nvcc编译cuda文件,所以只能下载安装编译好的mamba二进制文件。

二、安装causal-conv1d

mamba要求causal-conv1d>=1.4.0,一般来说直接使用pip install causal-conv1d是无法安装的,我们最好手动下载其二进制文件安装。

  1. 首先进入causal-conv1d的[官网](GitHub - Dao-AILab/causal-conv1d: Causal depthwise conv1d in CUDA, with a PyTorch interface);
  2. 找到和自己机器环境(cuda版本、python版本、pytorch版本等)对应的causal-conv1d二进制文件。我的机器环境是:
ini 复制代码
ubuntu 24.04;
cuda 11.8;
python 3.10;
pytorch 2.6.0

所以我选择的二进制文件是:

注意:一般服务器无法翻墙,使用wget url下载速度很慢,可以先在本地机器上挂梯子下载好之后,再传到服务器上。最后只需要执行pip install <文件名>就可以安装成功了。

三、安装mamba_ssm

安装mamba_ssm有两种方式,一个是在github上下载源码,然后pip instal -e .使用开发者模式安装。但是这个过程很慢,而且要求nvcc也符合版本要求。 我们可以直接下载对应版本的编译好的二进制文件,同理安装我的环境我下载的是:

检验mamba是否安装成功

如果causal-conv1d和mamba_ssm都成功安装没有报错,环境配置成功,我们可以检验一下是否配置成功: from mamba_ssm.ops.selective_scan_interface import selective_scan_fn执行这段代码没有报错,并能够点进去查看源码,说明环境配置成功。

相关推荐
Blossom.1181 天前
从“能写”到“能干活”:大模型工具调用(Function-Calling)的工程化落地指南
数据库·人工智能·python·深度学习·机器学习·计算机视觉·oracle
byzy1 天前
【论文笔记】RadarOcc: Robust 3D Occupancy Prediction with 4D Imaging Radar
论文阅读·深度学习·自动驾驶
飞机火车巴雷特1 天前
【论文阅读】Uncertainty Modeling for Out-of-Distribution Generalization (ICLR 2022)
论文阅读·深度学习·不确定性建模
lifallen1 天前
淘宝RecGPT:通过LLM增强推荐
人工智能·深度学习·ai·推荐算法
IT学长编程1 天前
计算机毕业设计 基于深度学习的酒店评论文本情感分析研究 Python毕业设计项目 Hadoop毕业设计选题 机器学习选题【附源码+文档报告+安装调试】
hadoop·python·深度学习·机器学习·数据分析·毕业设计·酒店评论文本情感分析
Genevieve_xiao1 天前
【dl】python基础 深度学习中需要用到的python基础
python·深度学习
和鲸社区1 天前
四大经典案例,入门AI算法应用,含分类、回归与特征工程|2025人工智能实训季初阶赛
人工智能·python·深度学习·算法·机器学习·分类·回归
七芒星20231 天前
ResNet(详细易懂解释):残差网络的革命性突破
人工智能·pytorch·深度学习·神经网络·学习·cnn
大千AI助手1 天前
线性预热机制(Linear Warmup):深度学习训练稳定性的关键策略
人工智能·深度学习·大模型·模型训练·学习率·warmup·线性预热机制
진영_1 天前
深度学习打卡第N6周:中文文本分类-Pytorch实现
人工智能·深度学习