DB-GPT 最新0.7.0版本Windows 部署

文档:官方文档

Data Agents

我这里就说下细节,我是

小兵我是在在服务器里部署的,不建议小的服务器部署,会GG了

1. 前置环境

因为DB-GPT 越来越强大了,只用pip来管理依赖包的话不太优雅,因此使用 uv 来管理。我最近写的项目也再慢慢转 uv 了,也推荐大家慢慢转过来。本教程讲解以 代理模型 为例, 也就是 openai-proxy

1.1 uv 安装
复制代码
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
当然我这里用到的是conda来进行虚拟环境
1.2项目拉取
复制代码
git clone https://github.com/eosphoros-ai/DB-GPT.git
cd DB-GPT

弄好后,记得把sqlite3 的数据也弄好哦,特别提醒

拉取完后,我是本地部署的

1.3Local(本地模型):
复制代码
uv sync --all-packages --extra "base" --extra "cuda121" --extra "hf" --extra "rag" --extra "storage_chromadb" --extra "quant_bnb" --extra "dbgpts"

安装完包后

可以提前把模型下载

复制代码
git clone https://www.modelscope.cn/Qwen/Qwen2.5-14B-Instruct.git

git clone https://hf-mirror.com/BAAI/bge-large-zh-v1.5.git

这里大概33G+,请耐心等待

2.最后

1步骤

cd E:\DB-GPT\

2进入环境

conda activate dbgpt_env_7

3.执行系统运行

uv run dbgpt start webserver --config .\configs\dbgpt-local-qwen.toml

这里提醒一下,local本地一定运行对应的配置文件

复制代码
[system]
# Load language from environment variable(It is set by the hook)
language = "${env:DBGPT_LANG:-zh}"
api_keys = []
encrypt_key = "your_secret_key"

# Server Configurations
[service.web]
host = "0.0.0.0"
port = 5670

[service.web.database]
type = "sqlite"
path = "pilot/meta_data/dbgpt.db"

[rag.storage]
[rag.storage.vector]
type = "chroma"
persist_path = "pilot/data"

# Model Configurations
[models]
[[models.llms]]
name = "Qwen2.5-0.5B-Instruct"
provider = "hf"
# If not provided, the model will be downloaded from the Hugging Face model hub
# uncomment the following line to specify the model path in the local file system
# path = "the-model-path-in-the-local-file-system"
path = "models/Qwen2.5-0.5B-Instruct"

[[models.embeddings]]
name = "BAAI/bge-large-zh-v1.5"
provider = "hf"
# If not provided, the model will be downloaded from the Hugging Face model hub
# uncomment the following line to specify the model path in the local file system
# path = "the-model-path-in-the-local-file-system"
path = "models/BAAI/bge-large-zh-v1.5"

配置文件根据实际的情况来改

特别注意

复制代码
# Model Configurations
[models]
[[models.llms]]
name = "Qwen2.5-0.5B-Instruct"
provider = "hf"
# If not provided, the model will be downloaded from the Hugging Face model hub
# uncomment the following line to specify the model path in the local file system
# path = "the-model-path-in-the-local-file-system"
path = "models/Qwen2.5-0.5B-Instruct"

[[models.embeddings]]
name = "BAAI/bge-large-zh-v1.5"
provider = "hf"
# If not provided, the model will be downloaded from the Hugging Face model hub
# uncomment the following line to specify the model path in the local file system
# path = "the-model-path-in-the-local-file-system"
path = "models/BAAI/bge-large-zh-v1.5"

这里的路径和模型名称一定要对上,否则无法加载

提示如果本地部署,内容不够建议32G以上,这是最少的。

相关推荐
哥布林学者8 小时前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入(四)分层 softmax 和负采样
深度学习·ai
陆研一10 小时前
2026国内无痛使用Gemini 3与GPT-5.2
人工智能·ai·chatgpt
俊哥V14 小时前
[本周看点]AI算力扩张的“隐形瓶颈”——电网接入为何成为最大制约?
人工智能·ai
~kiss~14 小时前
大模型分词tiktoken、BPE、Sliding Window、Stride、DataLoader批次
ai
DO_Community16 小时前
DigitalOcean携手Persistent达成战略合作,让 AI 更亲民、更易扩展
大数据·人工智能·ai·llm·区块链
程序员泠零澪回家种桔子16 小时前
MCP协议(Model Context Protocol)及其在AI大模型系统中的作用
人工智能·ai
小真zzz17 小时前
2025-2026年AI PPT工具排行榜:ChatPPT的全面领先与竞品格局解析
人工智能·ai·powerpoint·ppt·aippt
啊阿狸不会拉杆18 小时前
《机器学习》第六章-强化学习
人工智能·算法·机器学习·ai·机器人·强化学习·ml
康康的AI博客18 小时前
多模态大一统:从GPT-4突破到AI领域质的飞跃之路
人工智能·ai
向量引擎20 小时前
[硬核架构] 2026 企业级 AI 网关落地指南:从“连接超时”到“秒级响应”的架构演进(附 Python/Java 源码)
人工智能·python·gpt·ai作画·架构·aigc·api调用