模型并行之Embedding表

模型并行之Embedding表

Embedding在推荐模型中承担着将用户、物品及上下文信息映射为低维稠密向量的核心任务,通过捕捉潜在语义关联和协同过滤信号,为推荐系统提供可计算的特征表达基础。其向量化表征能力不仅解决了高维稀疏数据难以直接建模的问题,更能通过隐式关系挖掘支撑用户兴趣建模和相似度计算,这种稠密向量空间的连续性特征为后续针对不同行为序列、场景维度或兴趣簇的Embedding切片分析提供了可行性,例如基于时间衰减、行为类型或属性聚类的切片方式可进一步细化用户意图的动态表征。

接下来以一个案例为例介绍有关Embedding表的5种切分方式: Table Wise **、Column WiseRow WiseTable Wise&Row Wise 、网格切分**。(前提 :假设用户有128个特征,每个特征的Dim是128,注:下图中Devicexx 表示不同的主机或服务器,Rankx****x表示同一个主机上的不同卡)

  • Table Wise切分:表示将所有embedding表放置在一个同一个device上的同个Rank上,其余的Rank和Device不放置。
  • Row Wise****切分 :表示将Embedding 表按照key的维度进行切分。注意::图右方的Device一般指的是不同的服务器,也可根据表的大小与需要进行设置到同一个Device。
  • Column Wise****切分 :表示将Embedding 表按列(Embedding Dim)切分到不同的Rank上,一个Embedding Dim维度为128均分切到4张卡上变成[0~31, 32~63,64~95,96~127]。也就是每一个Rank分别获取每个特征的{[0, 31],[32, 63], [64, 95], [96, 127]}。注意 :图中上方的Device一般指的是不同的服务器,也可根据表的大小与需要进行设置到同一个Device。

  • Table Wise&Row Wise :组合切分方式,将Table Wise与Row Wise进行结合,其表示将表放置在一个主机上,在该主机上的 rank 之间进行行式拆分。

网格切片:其组合了Table Wise、Row Wise 和Column Wise三种,表示先将Embedding表按照Column Wise切片,然后再将CW 分片后的结果以TWRW方式放置在主机上。

4:数据并行并行之Embedding表:数据并行表示每个Rank中都保留整个表的副本。

相关推荐
青瓷程序设计2 小时前
动物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
金智维科技官方3 小时前
RPA财务机器人为企业高质量发展注入动能
人工智能·机器人·rpa·财务
沫儿笙3 小时前
安川机器人tag焊接怎么节省保护气
人工智能·物联网·机器人
2501_941147423 小时前
人工智能赋能智慧教育互联网应用:智能学习与教育管理优化实践探索》
人工智能
阿龙AI日记4 小时前
详解Transformer04:Decoder的结构
人工智能·深度学习·自然语言处理
爱写代码的小朋友4 小时前
“数字镜像”与认知负能者:生成式AI个性化学习支持者的协同构建与伦理规制研究
人工智能
找方案4 小时前
新型智慧城市城市大数据应用解决方案
人工智能·智慧城市
K***72844 小时前
开源模型应用落地-工具使用篇-Spring AI-Function Call(八)
人工智能·spring·开源
Chat_zhanggong3455 小时前
K4A8G165WC-BITD产品推荐
人工智能·嵌入式硬件·算法
霍格沃兹软件测试开发5 小时前
Playwright MCP浏览器自动化指南:让AI精准理解你的命令
运维·人工智能·自动化