模型并行之Embedding表

模型并行之Embedding表

Embedding在推荐模型中承担着将用户、物品及上下文信息映射为低维稠密向量的核心任务,通过捕捉潜在语义关联和协同过滤信号,为推荐系统提供可计算的特征表达基础。其向量化表征能力不仅解决了高维稀疏数据难以直接建模的问题,更能通过隐式关系挖掘支撑用户兴趣建模和相似度计算,这种稠密向量空间的连续性特征为后续针对不同行为序列、场景维度或兴趣簇的Embedding切片分析提供了可行性,例如基于时间衰减、行为类型或属性聚类的切片方式可进一步细化用户意图的动态表征。

接下来以一个案例为例介绍有关Embedding表的5种切分方式: Table Wise **、Column WiseRow WiseTable Wise&Row Wise 、网格切分**。(前提 :假设用户有128个特征,每个特征的Dim是128,注:下图中Devicexx 表示不同的主机或服务器,Rankx****x表示同一个主机上的不同卡)

  • Table Wise切分:表示将所有embedding表放置在一个同一个device上的同个Rank上,其余的Rank和Device不放置。
  • Row Wise****切分 :表示将Embedding 表按照key的维度进行切分。注意::图右方的Device一般指的是不同的服务器,也可根据表的大小与需要进行设置到同一个Device。
  • Column Wise****切分 :表示将Embedding 表按列(Embedding Dim)切分到不同的Rank上,一个Embedding Dim维度为128均分切到4张卡上变成[0~31, 32~63,64~95,96~127]。也就是每一个Rank分别获取每个特征的{[0, 31],[32, 63], [64, 95], [96, 127]}。注意 :图中上方的Device一般指的是不同的服务器,也可根据表的大小与需要进行设置到同一个Device。

  • Table Wise&Row Wise :组合切分方式,将Table Wise与Row Wise进行结合,其表示将表放置在一个主机上,在该主机上的 rank 之间进行行式拆分。

网格切片:其组合了Table Wise、Row Wise 和Column Wise三种,表示先将Embedding表按照Column Wise切片,然后再将CW 分片后的结果以TWRW方式放置在主机上。

4:数据并行并行之Embedding表:数据并行表示每个Rank中都保留整个表的副本。

相关推荐
John_ToDebug20 分钟前
大模型提示词(Prompt)终极指南:从原理到实战,让AI输出质量提升300%
人工智能·chatgpt·prompt
居然JuRan20 分钟前
LangGraph从0到1:开启大模型开发新征程
人工智能
双向3329 分钟前
实战测试:多模态AI在文档解析、图表分析中的准确率对比
人工智能
用户51914958484531 分钟前
1989年的模糊测试技术如何在2018年仍发现Linux漏洞
人工智能·aigc
人类发明了工具32 分钟前
【深度学习-基础知识】单机多卡和多机多卡训练
人工智能·深度学习
用户51914958484543 分钟前
检索增强生成(RAG)入门指南:构建知识库与LLM协同系统
人工智能·aigc
星期天要睡觉1 小时前
机器学习——CountVectorizer将文本集合转换为 基于词频的特征矩阵
人工智能·机器学习·矩阵
lxmyzzs1 小时前
【图像算法 - 14】精准识别路面墙体裂缝:基于YOLO12与OpenCV的实例分割智能检测实战(附完整代码)
人工智能·opencv·算法·计算机视觉·裂缝检测·yolo12
什么都想学的阿超1 小时前
【大语言模型 01】注意力机制数学推导:从零实现Self-Attention
人工智能·语言模型·自然语言处理