模型并行之Embedding表

模型并行之Embedding表

Embedding在推荐模型中承担着将用户、物品及上下文信息映射为低维稠密向量的核心任务,通过捕捉潜在语义关联和协同过滤信号,为推荐系统提供可计算的特征表达基础。其向量化表征能力不仅解决了高维稀疏数据难以直接建模的问题,更能通过隐式关系挖掘支撑用户兴趣建模和相似度计算,这种稠密向量空间的连续性特征为后续针对不同行为序列、场景维度或兴趣簇的Embedding切片分析提供了可行性,例如基于时间衰减、行为类型或属性聚类的切片方式可进一步细化用户意图的动态表征。

接下来以一个案例为例介绍有关Embedding表的5种切分方式: Table Wise **、Column WiseRow WiseTable Wise&Row Wise 、网格切分**。(前提 :假设用户有128个特征,每个特征的Dim是128,注:下图中Devicexx 表示不同的主机或服务器,Rankx****x表示同一个主机上的不同卡)

  • Table Wise切分:表示将所有embedding表放置在一个同一个device上的同个Rank上,其余的Rank和Device不放置。
  • Row Wise****切分 :表示将Embedding 表按照key的维度进行切分。注意::图右方的Device一般指的是不同的服务器,也可根据表的大小与需要进行设置到同一个Device。
  • Column Wise****切分 :表示将Embedding 表按列(Embedding Dim)切分到不同的Rank上,一个Embedding Dim维度为128均分切到4张卡上变成[0~31, 32~63,64~95,96~127]。也就是每一个Rank分别获取每个特征的{[0, 31],[32, 63], [64, 95], [96, 127]}。注意 :图中上方的Device一般指的是不同的服务器,也可根据表的大小与需要进行设置到同一个Device。

  • Table Wise&Row Wise :组合切分方式,将Table Wise与Row Wise进行结合,其表示将表放置在一个主机上,在该主机上的 rank 之间进行行式拆分。

网格切片:其组合了Table Wise、Row Wise 和Column Wise三种,表示先将Embedding表按照Column Wise切片,然后再将CW 分片后的结果以TWRW方式放置在主机上。

4:数据并行并行之Embedding表:数据并行表示每个Rank中都保留整个表的副本。

相关推荐
ss.li5 分钟前
TripGenie:畅游济南旅行规划助手:个人工作纪实(二十二)
javascript·人工智能·python
小天才才14 分钟前
前沿论文汇总(机器学习/深度学习/大模型/搜广推/自然语言处理)
人工智能·深度学习·机器学习·自然语言处理
新加坡内哥谈技术44 分钟前
Meta计划借助AI实现广告创作全自动化
运维·人工智能·自动化
西猫雷婶1 小时前
pytorch基本运算-导数和f-string
人工智能·pytorch·python
Johny_Zhao1 小时前
华为MAAS、阿里云PAI、亚马逊AWS SageMaker、微软Azure ML各大模型深度分析对比
linux·人工智能·ai·信息安全·云计算·系统运维
顽强卖力1 小时前
第二十八课:深度学习及pytorch简介
人工智能·pytorch·深度学习
述雾学java1 小时前
深入理解 transforms.Normalize():PyTorch 图像预处理中的关键一步
人工智能·pytorch·python
武子康1 小时前
大数据-276 Spark MLib - 基础介绍 机器学习算法 Bagging和Boosting区别 GBDT梯度提升树
大数据·人工智能·算法·机器学习·语言模型·spark-ml·boosting
要努力啊啊啊1 小时前
使用 Python + SQLAlchemy 创建知识库数据库(SQLite)—— 构建本地知识库系统的基础《一》
数据库·人工智能·python·深度学习·自然语言处理·sqlite
武子康1 小时前
大数据-277 Spark MLib - 基础介绍 机器学习算法 Gradient Boosting GBDT算法原理 高效实现
大数据·人工智能·算法·机器学习·ai·spark-ml·boosting