07.Python代码NumPy-排序sort,argsort,lexsort

07.Python代码NumPy-排序sort,argsort,lexsort

提示:帮帮志会陆续更新非常多的IT技术知识,希望分享的内容对您有用。本章分享的是NumPy的使用语法。前后每一小节的内容是存在的有:学习and理解的关联性,希望对您有用~

python语法-numPy 第七节 :排序sort,argsort,lexsort

上一小节详细分享了通过索引或切片来访问和修改 。本小节可能会用到取值。如晕,可查:
通过索引或切片来访问和修改


文章目录


排序

排序 sort

用于完成数组的排序,语法:

numpy.sort(arr, axis, kind, order)

arr: 要排序的数组

axis: 沿着它排序数组的轴,如果没有数组会被展开,沿着最后的轴排序, axis=0 按列排序,axis=1 按行排序

kind: 默认为'quicksort'(快速排序)

order: 如果数组包含字段,则是要排序的字段

kind:

quicksort'(快速排序)

'mergesort'(归并排序)

'heapsort'(堆排序)

python 复制代码
import numpy as np

#随意定义数组
a = np.array([[5, 9], [10, 2]])
print(a)#输出瞅一眼
#排序后
print(np.sort(a))#就是数字小的放前面,啥是前面,下标索引小就是前面,下标0就是最前呗
print()#啥也不输出,空一行
#axis=0 就是按列来排  竖着
print(np.sort(a, axis=0))
#axis=1 就是按行来排  横着
print(np.sort(a, axis=1))

#索引取值及切片,前面章节分享了。可以在文章开头点击

指定排序的列和按字母顺序排序 sort

复合类型,指定排序的列。且按字母排序

python 复制代码
#定义一个dtype数据类型,字符串的name  int的age
dt = np.dtype([('name',  'S10'),('age',  int)]) 
#声明一个数组,dtype=dt  指定数据类型是dt
a = np.array([("apple", 21), ("tom", 17), ("jack", 27), ("bbz", 25)], dtype=dt)
#瞅一眼
print (a)
#按列排序:order = 列名
print ('按 name 排序:')
print (np.sort(a, order =  'name'))

获得索引 argsort

用于得到排序后 的数组的索引值 。它返回的不是数据本身,而是排序后的索引组成的数组

所以,有时重点不再数据本身上。可以通过它直接用索引就行。

python 复制代码
import numpy as np

x = np.array([3, 1, 2])
#瞅一眼
print(x)
#返回排序后的索引。交给变量y
y = np.argsort(x)
print(y)#[1 2 0]   这个是索引
#通过y来取值,look look 排序后的数组
print(x[y])

按列排序 lexsort

返回下标索引

对多个序列进行排序,语法:先指定一个列排序,如果这个列有数据相同的,就按照第二个列来排序,如果第二个列又有数据相同的,就按照。。。。

指定多少个列或者哪个先排哪个后排,传递不同参数就好了,语法:

ind = np.lexsort((列n,列03,列02,列01))

越写到后面的列越先排:先排列01,在列02,
如:第一个数字就是按照需要最先排序的列,最小的那个数据,返回这个数据的索引

python 复制代码
#定义一组数据
name =  ('bangbangzhi','apple','abandon','bbz','hello')
#在定义一组数据
age =  (12,  18,  12, 20,15)
#他们两组数据是 我需要组合起来的:
#bangbangzhi,12   apple,18   abandon,12   。。。。
#组合出来之后,希望排好序:

#得到一个索引
ind = np.lexsort((name,age))   #先age(大小)  相同就name(字母顺序)
print (ind)#[2 0 4 1 3]  ===》 2 第三个,12的年龄及a打头的name
print ([name[i]  +  ", "  + str(age[i])  for i in ind]) #取出ind里面的索引拼接好组合的数据

(会陆续更新非常多的IT技术知识及泛IT的电商知识,可以点个关注,共同交流。比心)

相关推荐
jie*5 天前
小杰深度学习(five)——正则化、神经网络的过拟合解决方案
人工智能·python·深度学习·神经网络·numpy·matplotlib
西猫雷婶6 天前
random.shuffle()函数随机打乱数据
开发语言·pytorch·python·学习·算法·线性回归·numpy
MoRanzhi12036 天前
0. NumPy 系列教程:科学计算与数据分析实战
人工智能·python·机器学习·数据挖掘·数据分析·numpy·概率论
万粉变现经纪人8 天前
如何解决 pip install 安装报错 ModuleNotFoundError: No module named ‘flax’ 问题
selenium·flask·beautifulsoup·numpy·scikit-learn·pip·scipy
计算机编程小央姐11 天前
企业级大数据技术栈:基于Hadoop+Spark的全球经济指标分析与可视化系统实践
大数据·hadoop·hdfs·spark·echarts·numpy·课程设计
MoRanzhi120311 天前
12. NumPy 数据分析与图像处理入门
大数据·图像处理·人工智能·python·矩阵·数据分析·numpy
MoRanzhi120313 天前
9. NumPy 线性代数:矩阵运算与科学计算基础
人工智能·python·线性代数·算法·机器学习·矩阵·numpy
困鲲鲲14 天前
NumPy 系列(六):numpy 数组函数
python·numpy
半路_出家ren14 天前
python基础数据分析与可视化
python·数据分析·numpy·pandas·办公自动化·matplotlib·jupyternotebook
I'm a winner14 天前
第十四章:数据分析基础库NumPy(二)
数据挖掘·数据分析·numpy