Spark-Streaming简介及核心编程

一、核心概念:

1.Spark-Streaming 是流式数据处理框架,基于 **DStream(离散化流)** 抽象,将实时数据划分为多个时间区间的 RDD 序列。

DStream 本质是RDD 序列,每个时间区间数据对应一个 RDD。

2.特点:

易用性:支持 Java、Python、Scala 等语言,编程方式类似离线处理。

容错性:无需额外配置即可恢复丢失数据。

易整合性:可与 Spark 批处理结合,支持离线与实时处理统一代码。

3.架构与机制:

背压机制:Spark 1.5 + 引入,通过spark.streaming.backpressure.enabled控制(默认false),根据作业执行情况动态调整数据接收速率,替代静态参数spark.streaming.receiver.maxRate。

实操案例:

WordCount 案例:通过socketTextStream读取 TCP 端口(如 9999)数据,经flatMap、map、reduceByKey等操作统计单词计数,时间间隔设置为3 秒

二、Spark-Streaming 核心编程

1.DStream 创建方式:

RDD 队列:通过ssc.queueStream(queueOfRDDs)创建,案例中使用队列循环添加 RDD(含 1-300 的整数),时间间隔4 秒,每次添加后线程休眠2000 毫秒。

自定义数据源:继承Receiver类,实现onStart(启动线程接收数据)和onStop方法,案例中监控端口 9999,时间间隔5 秒,通过receiverStream获取数据。

关键实现:

自定义CustomerReceiver类通过 Socket 读取指定端口数据,使用store(input)存储数据,并在连接中断时调用restart("restart")重启

相关推荐
棠十一2 分钟前
Rabbitmq
分布式·docker·rabbitmq
Lansonli28 分钟前
大数据Spark(六十一):Spark基于Standalone提交任务流程
大数据·分布式·spark
Rverdoser2 小时前
电脑硬盘分几个区好
大数据
傻啦嘿哟2 小时前
Python 数据分析与可视化实战:从数据清洗到图表呈现
大数据·数据库·人工智能
Theodore_10222 小时前
大数据(2) 大数据处理架构Hadoop
大数据·服务器·hadoop·分布式·ubuntu·架构
簌簌曌3 小时前
CentOS7 + JDK8 虚拟机安装与 Hadoop + Spark 集群搭建实践
大数据·hadoop·spark
Theodore_10225 小时前
大数据(1) 大数据概述
大数据·hadoop·数据分析·spark·hbase
Aurora_NeAr5 小时前
Apache Spark详解
大数据·后端·spark
IvanCodes7 小时前
六、Sqoop 导出
大数据·hadoop·sqoop
G探险者7 小时前
《深入理解 Nacos 集群与 Raft 协议》系列五:为什么集群未过半,系统就不可用?从 Raft 的投票机制说起
分布式·后端