Spark-Streaming

WordCount案例

添加依赖

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

<parent>

<artifactId>Sparkes</artifactId>

<groupId>org.example</groupId>

<version>1.0-SNAPSHOT</version>

</parent>

<modelVersion>4.0.0</modelVersion>

<artifactId>Sparkes-core</artifactId>

<properties>

<maven.compiler.source>8</maven.compiler.source>

<maven.compiler.target>8</maven.compiler.target>

</properties>

<dependencies>

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-core_2.12</artifactId>

<version>3.0.0</version>

</dependency>

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-streaming_2.12</artifactId>

<version>3.0.0</version>

</dependency>

</dependencies>

</project>

代码

import org.apache.spark.SparkConf

import org.apache.spark.streaming.{Seconds, StreamingContext}

object SparkStreaming {

def main(args: Array[String]): Unit = {

// 创建 SparkConf 对象,设置运行模式和应用名称

val sparkConf = new SparkConf().setMaster("local[*]").setAppName("streaming")

// 创建 StreamingContext 对象,设置批处理间隔为 3 秒

val ssc = new StreamingContext(sparkConf, Seconds (3))

// 从指定的套接字地址接收文本流数据

val lineStreams = ssc.socketTextStream("node01", 9999)

// 将每行文本拆分为单词

val wordStreams = lineStreams.flatMap(_.split(" "))

// 将每个单词映射为 (单词, 1) 的键值对

val wordAndOneStreams = wordStreams.map((_, 1))

// 对相同单词的计数进行累加

val wordAndCountStreams = wordAndOneStreams.reduceByKey(_ + _)

// 打印每个批次的单词计数结果

wordAndCountStreams.print()

// 启动 StreamingContext

ssc.start()

// 等待 StreamingContext 终止

ssc.awaitTermination()

}

}

相关推荐
YJlio9 小时前
ShareEnum 学习笔记(9.5):内网共享体检——开放共享、匿名访问与权限风险
大数据·笔记·学习
wang_yb10 小时前
告别盲人摸象,数据分析的抽样方法总结
大数据·databook
dalalajjl10 小时前
每个Python开发者都应该试试知道创宇AiPy!工作效率提升500%的秘密武器
大数据·人工智能
2501_9416233219 小时前
人工智能赋能智慧农业互联网应用:智能种植、农业数据分析与产量优化实践探索》
大数据·人工智能
YangYang9YangYan19 小时前
网络安全专业职业能力认证发展路径指南
大数据·人工智能·安全·web安全
小五传输20 小时前
常用的文件摆渡系统:让数据安全高效跨越网络界限
大数据·运维·安全
数据科学小丫1 天前
数据分析与FineBI介绍
大数据·数据分析·finebi
ALex_zry1 天前
Git大型仓库推送失败问题完整解决方案
大数据·git·elasticsearch
二进制coder1 天前
Git Fork 开发全流程教程
大数据·git·elasticsearch
天硕国产存储技术站1 天前
DualPLP 双重掉电保护赋能 天硕工业级SSD筑牢关键领域安全存储方案
大数据·人工智能·安全·固态硬盘