Spark,hadoop的组成

(一)Hadoop的组成

对普通用户来说, Hadoop就是一个东西,一个整体,它能给我们提供无限的磁盘用来保存文件,可以使用提供强大的计算能力。

在Hadoop3.X中,hadoop一共有三个组成部分:MapReduce,Yarn,HDFS。它们的作用如下:

MapReduce: 用来提供计算。

HDFS: 用来提供文件存储功能。

Yarn: 用来协调调度。

(二)HDFS

Hadoop Distributed File System, 简称HDFS,是一个分布式文件系统。在hadoop体系中,它用来存储文件。

例如,当我们把一个文件(例如500M),保存到hadoop中时,它的背后要实现两个效果:

如果文件较大(>128M)把大文件拆小,并分别传输。

存储3份在不同的主机上。

在它的内部,有三个角色,分别如下:

(1)NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间,副本数,文件权限),以及每个文件的块列表和块所在的DataNode等。

(2)DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和。

(3)Secondary NameNode(2nn): 每隔一段时间对NameNode元数据备份。

HDFS集群:一主加三从,额外再配一个小秘书

(三)YARN

Yet Another Resource Negotiator,简称YARN,另一种资源协调者,是Hadoop的资源管理器。

(1)ResourceManager(RM):整个集群资源(内存,CPU等)的管理者

(2)NodeManager(NM): 单个节点服务器资源的管理者

Yarn和HDFS的关系说明:逻辑上分离,物理上在一起。

逻辑上分离:不是说非要启动HDFS集群才能启动YARN集群,不是先有哪个再有哪个?每个框都是一个进程,可能都运行在一台主机上,但是,属于不同的集群。

物理上在一起:每一台机器上都有NN, NM。

(四)MapReduce

MapReduce用来提供计算的能力。它将计算过程分为两个阶段:Map和Reduce。

(1)Map阶段并行处理输入数据

(2)Reduce阶段对Map结果进行汇总


版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

原文链接:https://blog.csdn.net/2401_87076452/article/details/146391307

相关推荐
QYR_1127 分钟前
防水医用无人机市场报告:现状、趋势与洞察
大数据·网络·市场研究
阿里云大数据AI技术28 分钟前
数据开发再提速!DataWorks正式接入Qwen3-Coder
大数据·人工智能·数据分析
Xxtaoaooo29 分钟前
MCP协议全景解析:从工业总线到AI智能体的连接革命
大数据·人工智能·mcp协议·mcp解析·工业mcp
jarreyer40 分钟前
【语义分割】记录2:yolo系列
大数据·yolo·elasticsearch
青云交41 分钟前
Java 大视界 -- Java 大数据在智能安防入侵检测系统中的多源数据融合与误报率降低策略(369)
java·大数据·入侵检测·智能安防·多源数据融合·误报率降低·视频语义理解
程思扬1 小时前
无界设计新生态:Penpot开源平台与cpolar的云端协同创新实践
大数据·linux·服务器·前端·经验分享·ubuntu·开源
武子康1 小时前
大数据-54 Kafka 安装配置 从 ZooKeeper 到 KRaft 的演进之路
大数据·后端·kafka
爱埋珊瑚海~~2 小时前
开源AI智能体-JoyAgent集成Deepseek
大数据·人工智能·ai智能体
CCF_NOI.6 小时前
谷歌浏览器深入用法全解析:解锁高效网络之旅
大数据·运维·服务器·前端·计算机·谷歌
练习两年半的工程师9 小时前
金融科技中的跨境支付、Open API、数字产品服务开发、变革管理
大数据·科技·金融