Spark,hadoop的组成

(一)Hadoop的组成

对普通用户来说, Hadoop就是一个东西,一个整体,它能给我们提供无限的磁盘用来保存文件,可以使用提供强大的计算能力。

在Hadoop3.X中,hadoop一共有三个组成部分:MapReduce,Yarn,HDFS。它们的作用如下:

MapReduce: 用来提供计算。

HDFS: 用来提供文件存储功能。

Yarn: 用来协调调度。

(二)HDFS

Hadoop Distributed File System, 简称HDFS,是一个分布式文件系统。在hadoop体系中,它用来存储文件。

例如,当我们把一个文件(例如500M),保存到hadoop中时,它的背后要实现两个效果:

如果文件较大(>128M)把大文件拆小,并分别传输。

存储3份在不同的主机上。

在它的内部,有三个角色,分别如下:

(1)NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间,副本数,文件权限),以及每个文件的块列表和块所在的DataNode等。

(2)DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和。

(3)Secondary NameNode(2nn): 每隔一段时间对NameNode元数据备份。

HDFS集群:一主加三从,额外再配一个小秘书

(三)YARN

Yet Another Resource Negotiator,简称YARN,另一种资源协调者,是Hadoop的资源管理器。

(1)ResourceManager(RM):整个集群资源(内存,CPU等)的管理者

(2)NodeManager(NM): 单个节点服务器资源的管理者

Yarn和HDFS的关系说明:逻辑上分离,物理上在一起。

逻辑上分离:不是说非要启动HDFS集群才能启动YARN集群,不是先有哪个再有哪个?每个框都是一个进程,可能都运行在一台主机上,但是,属于不同的集群。

物理上在一起:每一台机器上都有NN, NM。

(四)MapReduce

MapReduce用来提供计算的能力。它将计算过程分为两个阶段:Map和Reduce。

(1)Map阶段并行处理输入数据

(2)Reduce阶段对Map结果进行汇总


版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

原文链接:https://blog.csdn.net/2401_87076452/article/details/146391307

相关推荐
盈飞无限12 小时前
质量智能革命:SPC软件助力中国制造驶入高质量发展快车道
大数据·人工智能·制造
老蒋新思维13 小时前
2025 创客匠人全球创始人 IP + AI 万人高峰论坛:破局创业困境,拥抱无限未来
大数据·网络·人工智能·网络协议·tcp/ip·创客匠人·知识变现
xiaoshu_yilian14 小时前
pyspark入门实操(收藏版)
spark
api_1800790546014 小时前
【技术教程】Python/Node.js 调用拼多多商品详情 API 示例详解
大数据·开发语言·python·数据挖掘·node.js
hzbigdog16 小时前
php的CSV大数据导入导出的通用处理类
大数据·后端·php
Web3_Daisy16 小时前
如何在市场波动中稳步推进代币发行
大数据·人工智能·物联网·web3·区块链
yumgpkpm16 小时前
Hadoop大数据平台在中国AI时代的后续发展趋势研究CMP(类Cloudera CDP 7.3 404版华为鲲鹏Kunpeng)
大数据·hive·hadoop·python·zookeeper·oracle·cloudera
一瓢一瓢的饮 alanchan16 小时前
Flink原理与实战(java版)#第1章 Flink快速入门(第一节IDE词频统计)
java·大数据·flink·kafka·实时计算·离线计算·流批一体化计算
Elastic 中国社区官方博客17 小时前
Elasticsearch:相关性在 AI 代理上下文工程中的影响
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
萤丰信息18 小时前
智慧园区:数字中国的“微缩实验室”如何重构城市未来
大数据·人工智能·科技·安全·重构·智慧园区